Physics-Guided Adversarial Machine Learning for Aircraft Systems Simulation

Abstract

In the context of aircraft system performance assessment, deep learning technologies allow us to quickly infer models from experimental measurements, with less detailed system knowledge than usually required by physics-based modeling. However, this inexpensive model development also comes with new challenges regarding model trustworthiness. This article presents a novel approach, physics-guided adversarial machine learning (ML), which improves the confidence over the physics consistency of the model. The approach performs, first, a physics-guided adversarial testing phase to search for test inputs revealing behavioral system inconsistencies, while still falling within the range of foreseeable operational conditions. Then, it proceeds with a physics-informed adversarial training to teach the model the system-related physics domain foreknowledge through iteratively reducing the unwanted output deviations on the previously uncovered counterexamples. Empirical evaluation on two aircraft system performance models shows the effectiveness of our adversarial ML approach in exposing physical inconsistencies of both the models and in improving their propensity to be consistent with physics domain knowledge.

Type
Publication
In IEEE Transactions on Reliability
Houssem Ben Braiek
Houssem Ben Braiek
Ph.D., M.Sc.

I am ML Tech Lead with a background in software engineering, holding M.Sc. and Ph.D. degrees from Polytechnique Montreal with distinction. My role involves supervising and guiding the development of machine learning solutions for intelligent automation systems. As an active SEMLA member, I contribute to research projects in trustworthy AI, teach advanced technical courses in SE4ML and MLOps, and organize workshops.