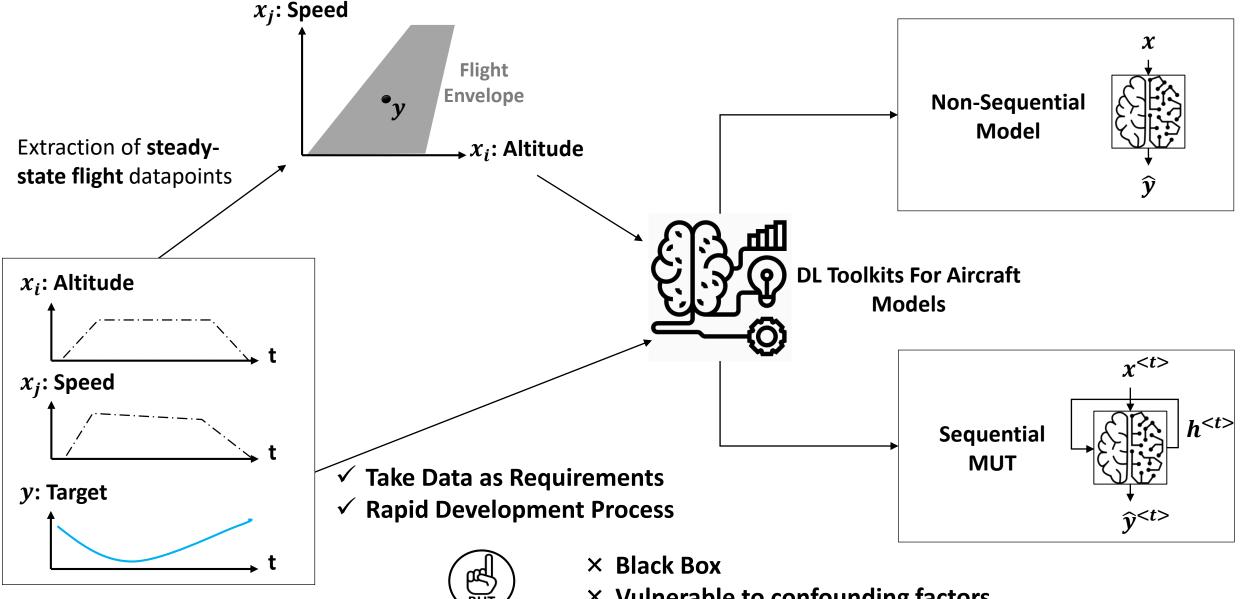


1

Domain-Aware Deep Learning Testing for Aircraft Models

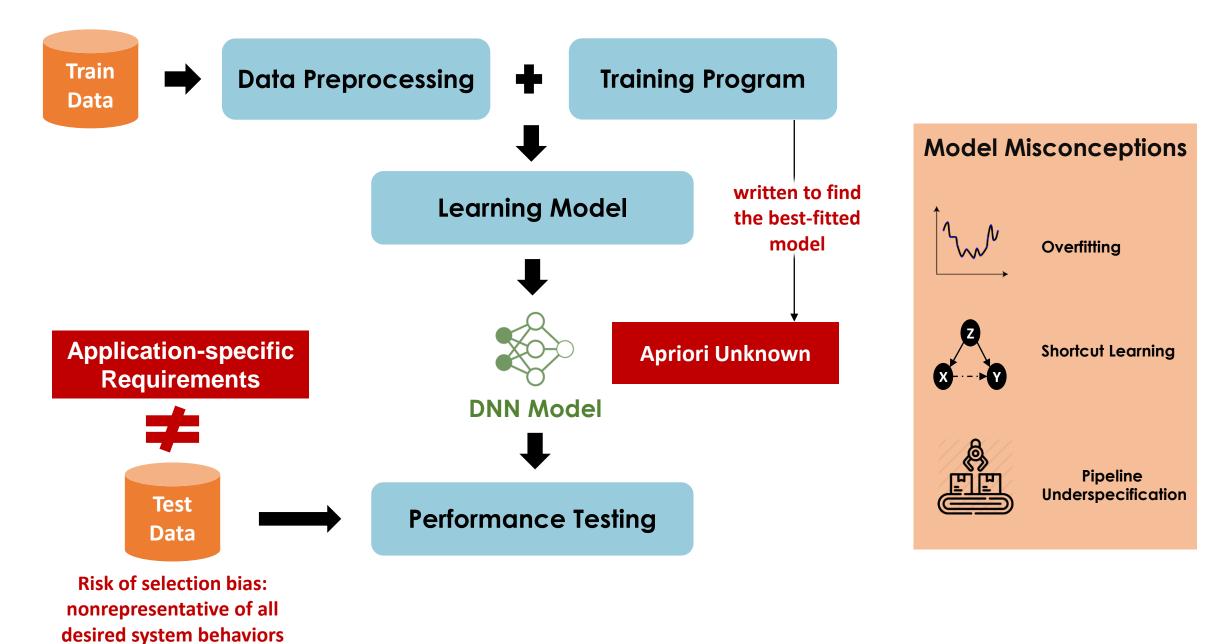
Houssem Ben Braiek, Ph.D. DEEL/Bombardier

DL-based A/C System Performance Models

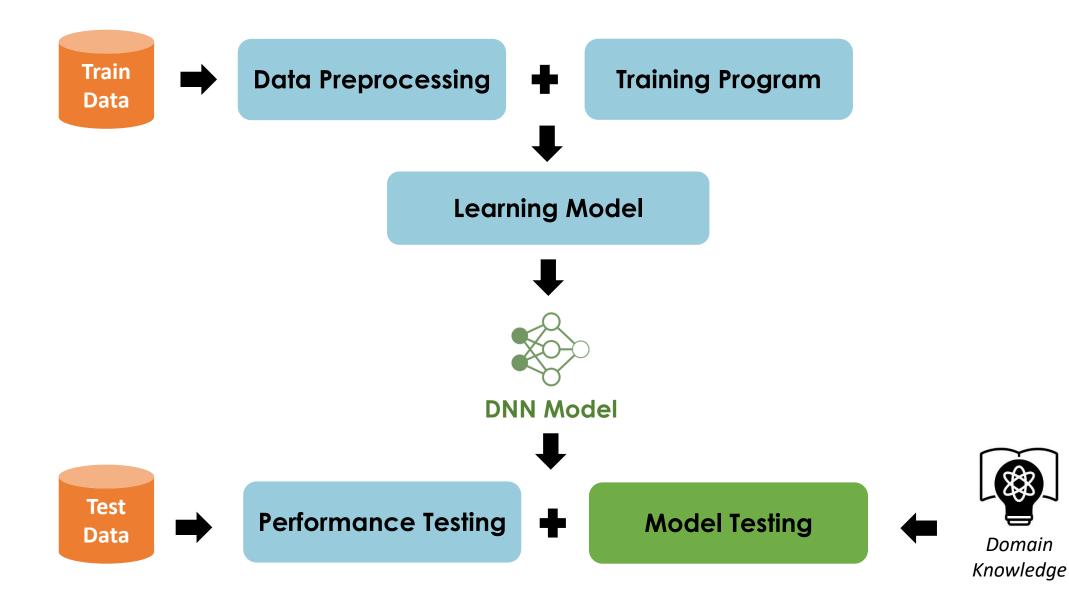


2

Challenges of Quality Assurance for DL Models

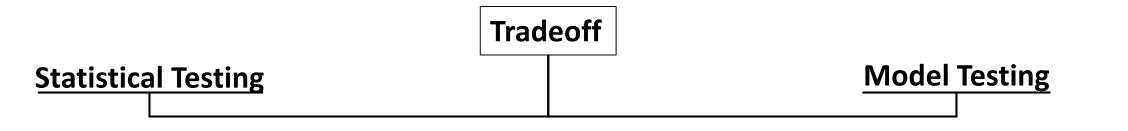


Need for Domain-Aware DL Testing Models



4

Goal of Domain-Aware DL Testing Models



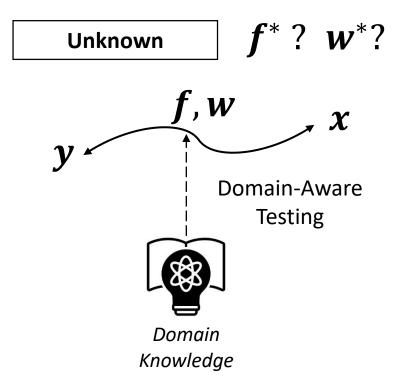
Estimate the **iid performance** of the model for completely **new inputs**.

$$Err = \sum_{i \in D_{test}} \left(\widehat{y}^{(i)} - y^{(i)} \right)^2$$

Use unseen test data D_{test} as a proxy for future entries (x_{new}) .

$$D_{test} = \{ (x^{(i)}, y^{(i)}) \}_{i \in [1,N]}$$

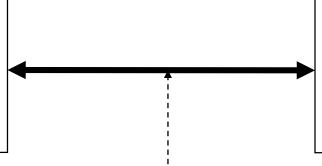
Collection of D_{test} is costly in aircraft industry Test the **internal logic/mappings** of the model against the prior knowledge on the nature of the relation between *x* and *y*.



Goal of Domain-Aware DL Testing Models

From Deep Learning Perspective:

Best-fitted DL solution simulates perfectly the designed system behavior under similar or close operating conditions.

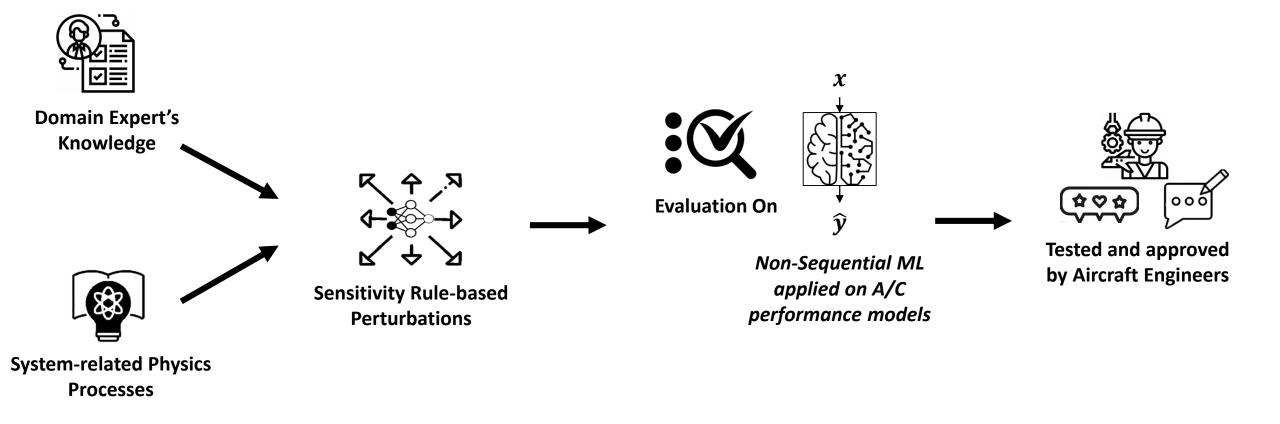


From Engineering Perspective:

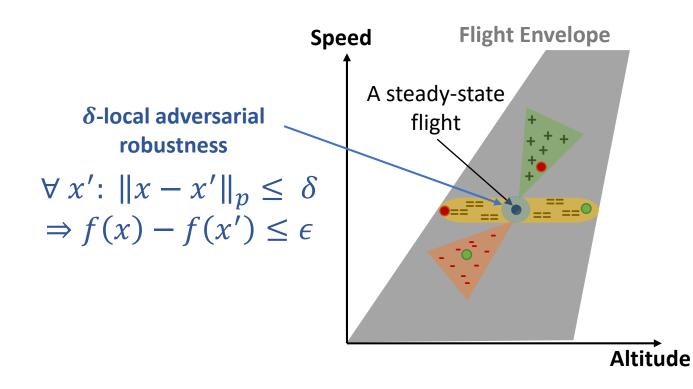
A/C performance models should simulate accurately the designed system behavior given any foreseeable operating conditions.

Domain-aware Testing Approaches contribute to close this gap and to steer the DL model development towards solving the real target problem.

Definition of Physics-grounded Sensitivity Rules



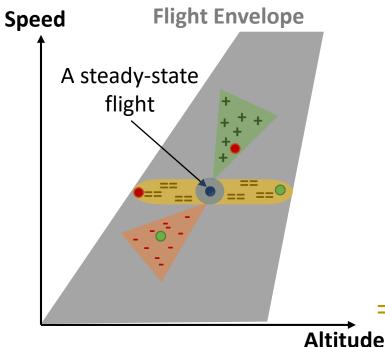
Novelty of Physics-guided Adversarial ML



Relying on Physics-grounded Sensitivity rules :
We perform invariance/directional expectation tests.
1. For which the prediction should almost hold
2. For which the prediction should increase
3. For which the prediction should decrease

These represent the revealed adversarial inputs x for which the predictions are not consistent with the foreknown local sensitivities.

Types of Physics-based Adversarial Test/Fix



Physics-based Invariance Test/Fix (Steadying)

1. For which the prediction should almost hold

 $x_i \nearrow, x_{i+1} \searrow, \dots, x_n \leftrightarrow \Rightarrow f \leftrightarrow$ [Rule Spec]

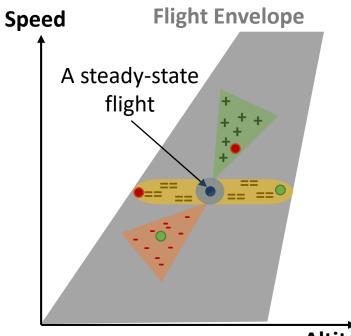
 $\forall x', \forall i \in I_{pr}: (x_i - x'_i) \leq \delta_i$

[Input Perturbation]

 $\Rightarrow |f(x) - f(x')| \le \epsilon$ [Test Assertion]

 $\Rightarrow R(x, x') = \max(tol^2, (f(x) - f(x'))^2) - tol^2 \text{ [Regularization Term]}$ ude

Types of Physics-based Adversarial Test/Fix



Physics-based Directional Expectation Test/Fix (Increasing)

2. For which the prediction should increase

 $x_i \nearrow, x_{i+1} \searrow, \dots, x_n \leftrightarrow \Rightarrow f \nearrow$ [Rule Spec]

 $\forall x', \forall i \in I_{inc'} (x_i - x_i') \leq \delta_i$

[Signed Input Perturbation]

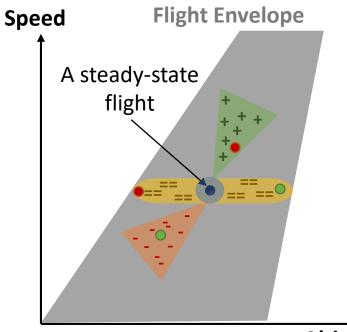
 $\Rightarrow f(x) \geq f(x')$

[Test Assertion]

 $\Rightarrow R(x, x') = (\max(tol, f(x) - f(x')) - tol)^2$ [Regularization Term]

Altitude

Types of Physics-based Adversarial Test/Fix



Physics-based Directional Expectation Test/Fix (Decreasing)

3. For which the prediction should decrease

 $x_i \nearrow, x_{i+1} \searrow, \dots, x_n \leftrightarrow \Rightarrow f \searrow$ [Rule Spec]

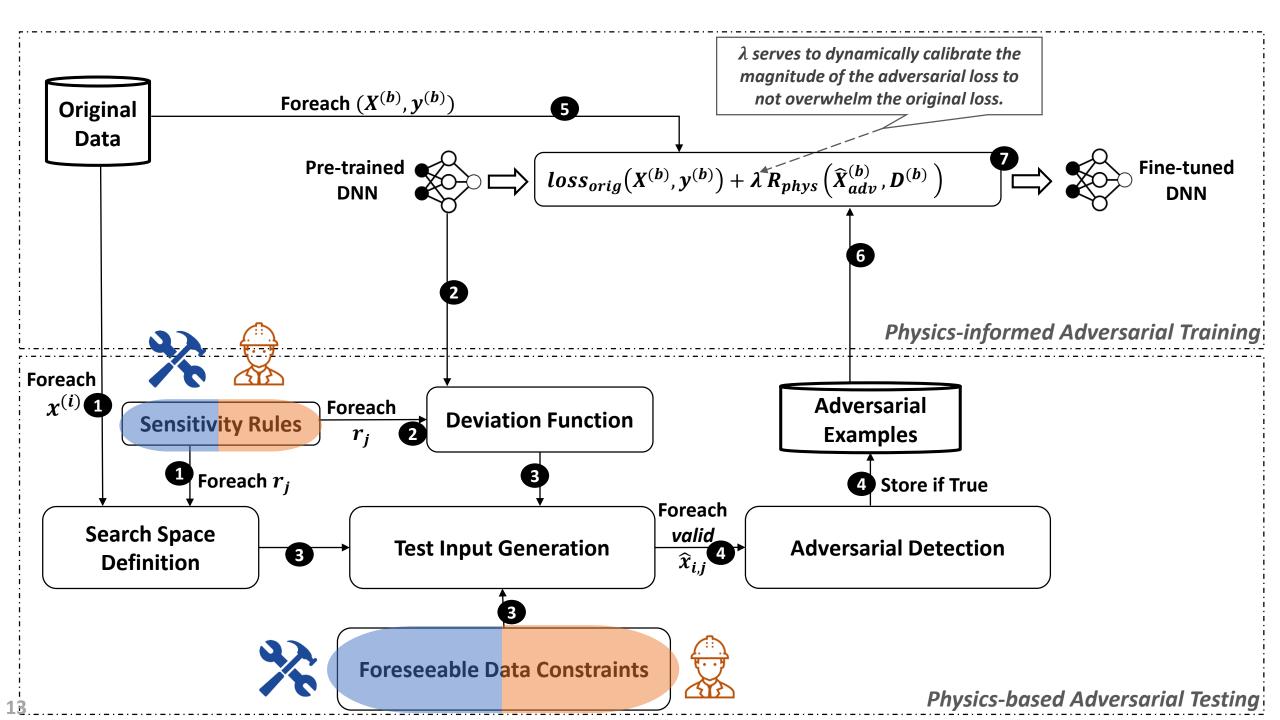
 $\forall x', \forall i \in I_{dec} : (x_i - x'_i) \leq \delta_i$

[Signed Input Perturbation]

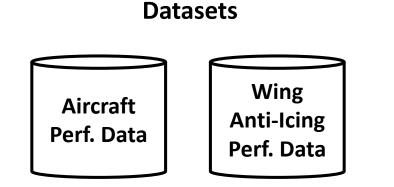
 $\Rightarrow f(x) \le f(x')$ [Test Assertion]

 $\Rightarrow R(x, x') = (\max(tol, f(x') - f(x)) - tol)^2 [Regularization Term]$ de

Altitude



Study Cases for Empirical Evaluation



Base Model

Model	Predicted Target	Description	
A/C Perf	α: angle of attack	The model maps steady-state angle of attack (α) to features related to flight conditions and wing configurations.	
WAI. Perf	T^{b}_{skin} : A-wing leading-edge skin temperature	The model maps the states of skin	
	<i>T</i> ^b _{skin} : B-wing leading-edge skin temperature	temperature sensors to features related to flight conditions, wing configurations, and high-pressure pneumatic system conditions at the wing root.	

Some Results of the Empirical Evaluation

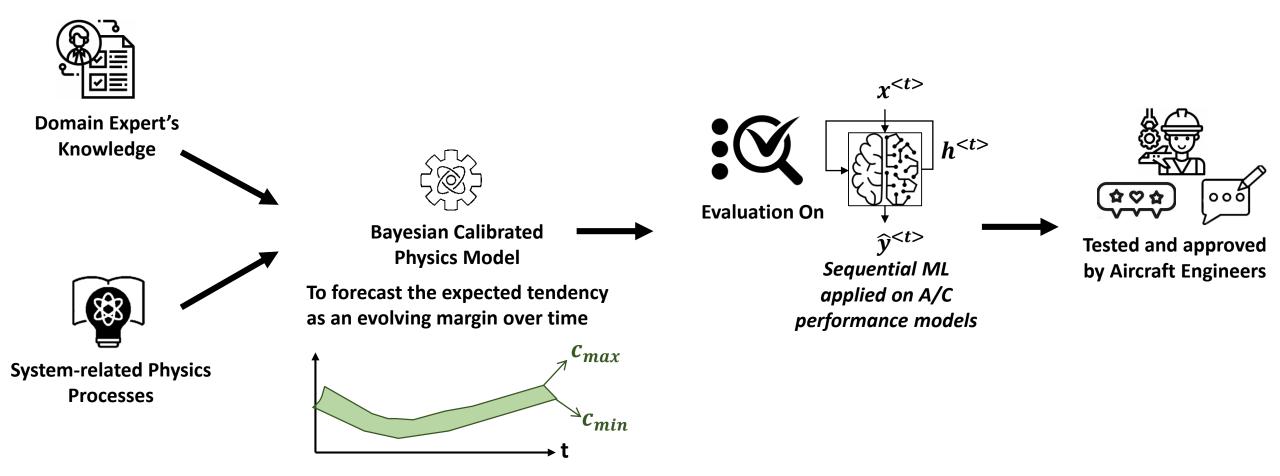
Comparison between #adversarials Before and After fine-tuning

SYS	G	pre-fixed	post-fixed	Improv.(%)
A-C Perf.	Random	5267	1012	80.78%
	PSO	39551	5747	85.46%
	GA	2850	636	77.68%
WAI Perf.	Random	509	0	100%
	PSO	20545	18	99.91%
	GA	459	4	99.12%

Comparison between unscaled RMSE Before and After fine-tuning

SYS	Target	pre-fixed	Algo	post-fixed
A-C Perf.	α	0.498°	Random	0.497°
			PSO	0.996°
			GA	0.444°
WAI Perf.	T^a_{skin}	4.088°C	Random	4.729°C
			PSO	4.422°C
			GA	3.979°C
	T^b_{skin}	7.524°C	Random	7.921°C
			PSO	6.826°C
			GA	7.163°C

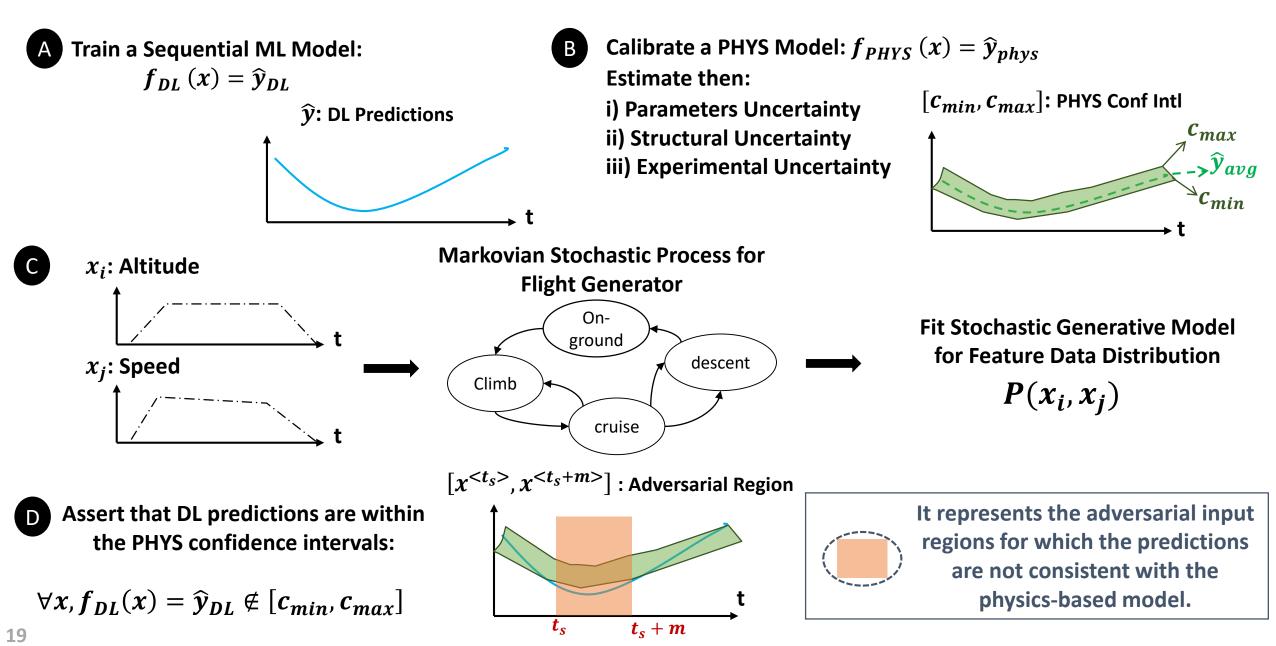
Definition of Physics-based Margin Forecast



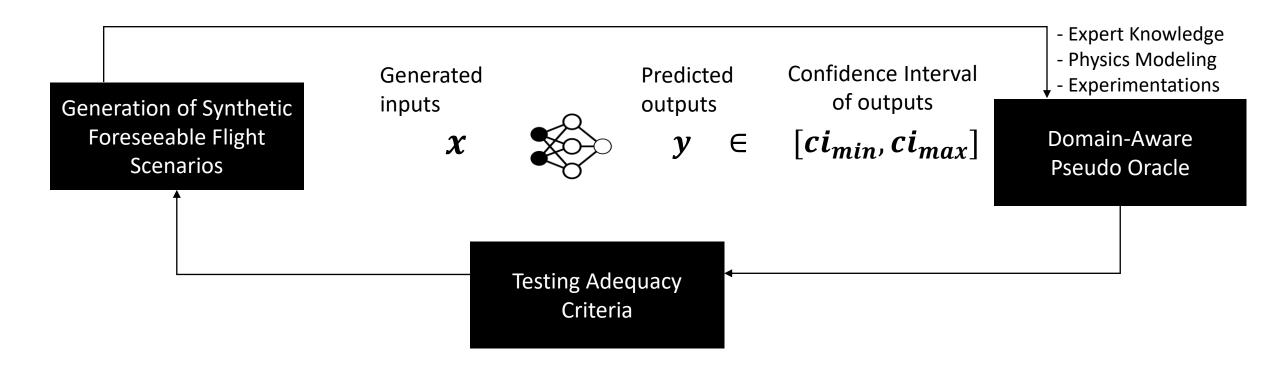
Design Both Types of Models

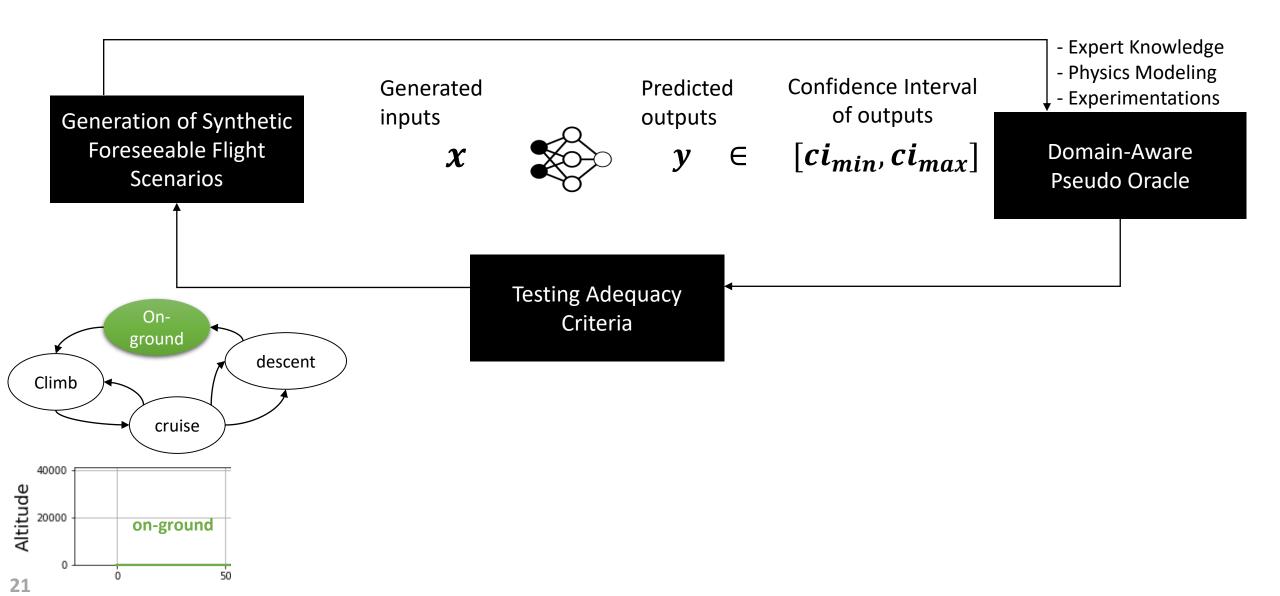
Calibrate a PHYS Model: $f_{PHYS}(x; \theta) = \hat{y}_{phys}$ Train a Sequential ML Model: $f_{DL}(x; \theta) = \hat{y}_{DL}$ **Estimate then:** $[c_{min}, c_{max}]$: PHYS Conf Intl i) Parameters Uncertainty \hat{y} : DL Predictions ii) Structural Uncertainty *c*max \widehat{y}_{phys} iii) Experimental Uncertainty C_{min} $f_{PHYS}(x; \theta)$: Parametric Solution for Differential Equations $f_{DL}(x; \theta)$: Universal Approximation Function $\boldsymbol{\theta}$: Defined Quantities & Coefficients $\boldsymbol{\theta}$: Weights & Biases Inputs x Data-driven Bayesian $p(\theta | \hat{y}_{phys}, X) \propto p(\hat{y}_{phys} | \theta, X) \times p(\theta | X)$ *Inference for* Statistical Model Calibration Learning **Prior Probability** Update Data Likelihood Posterior Probability predicted **Parameters** outputs \hat{y}_{DL} i) Parameters Uncertainty $\Rightarrow \forall \alpha \in \theta, \ \alpha \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha})$ A Distance to minimize actual ii) Structural Uncertainty $\rightarrow y_{actual} \sim \mathcal{N}(\hat{y}_{phvs}, \sigma_{v})$ the loss outputs y iii) Experimental Uncertainty $\rightarrow y_{true} \sim \mathcal{N}(y_{actual}, \varepsilon_{noise})$ Loss Estimation 18

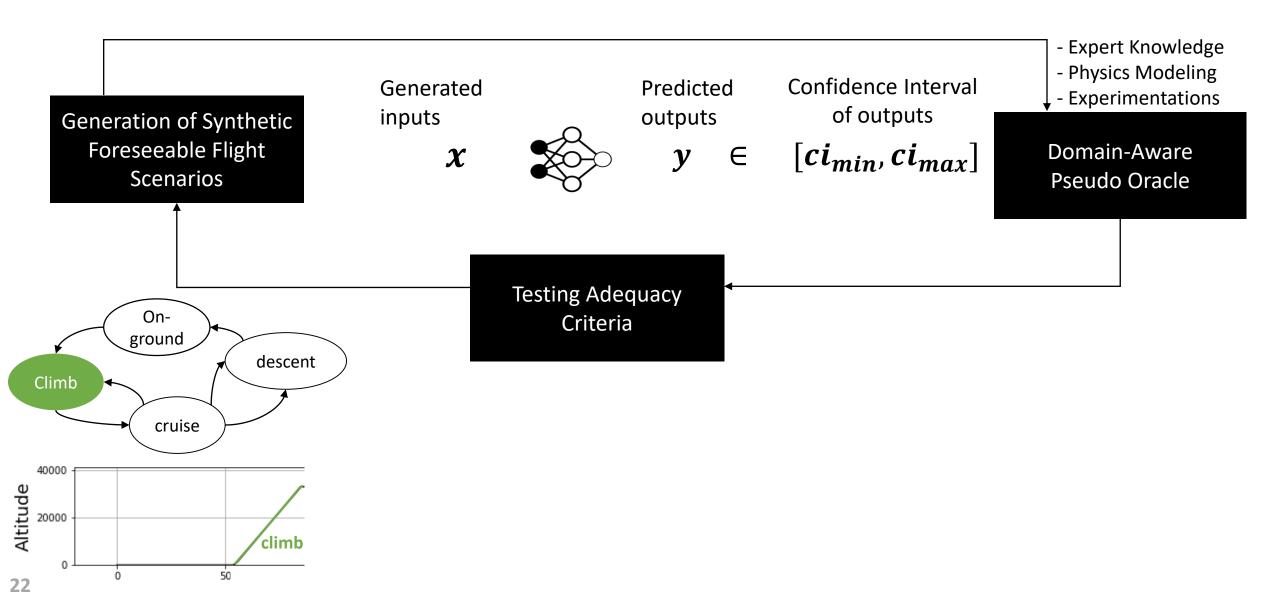
Physics-based Differential DL Testing

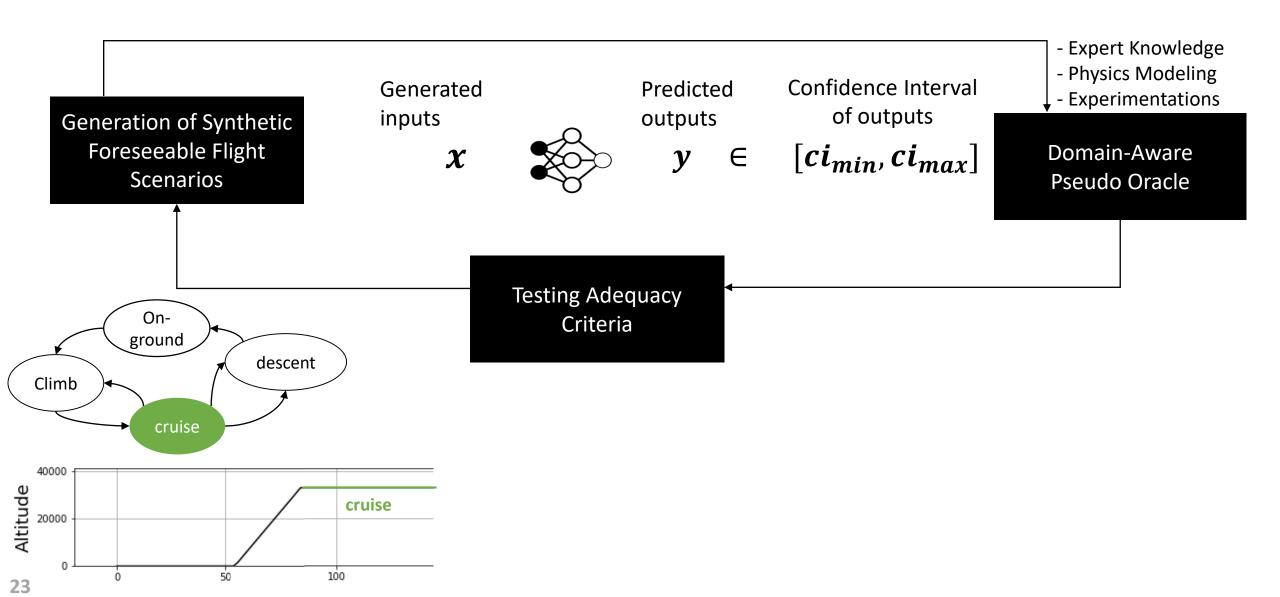


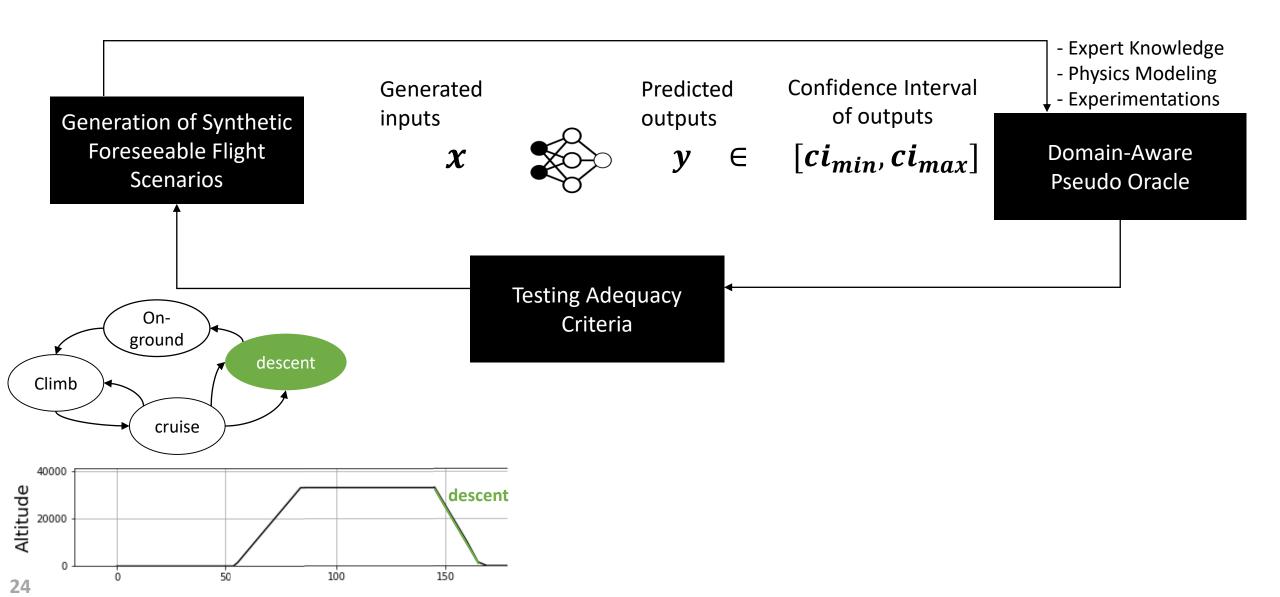
Physics-based Differential Test: Workflow



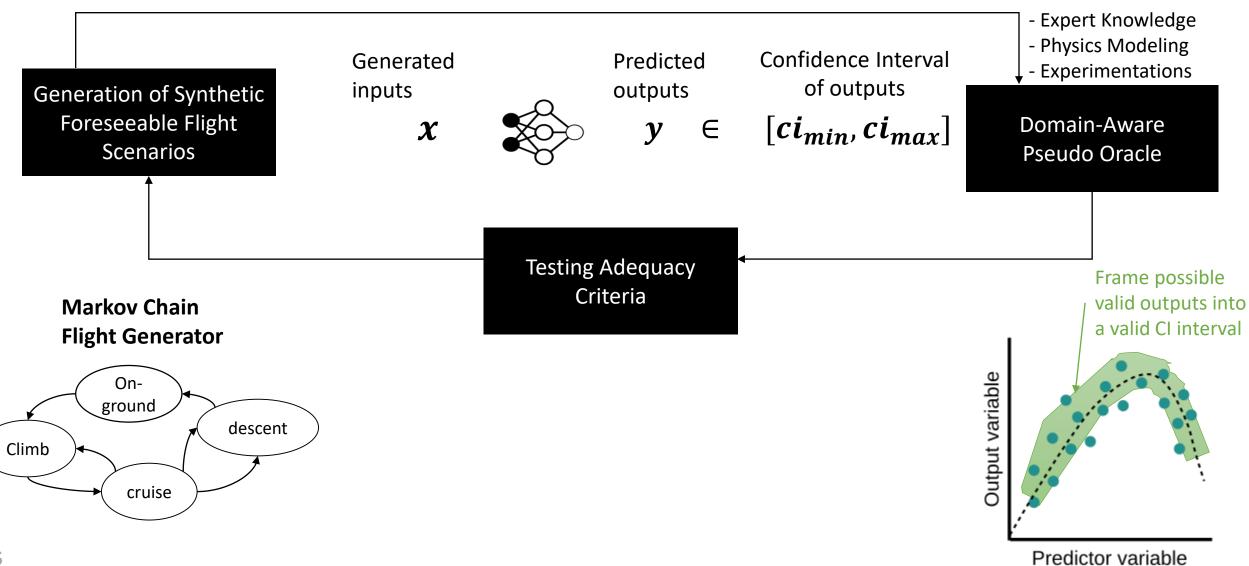




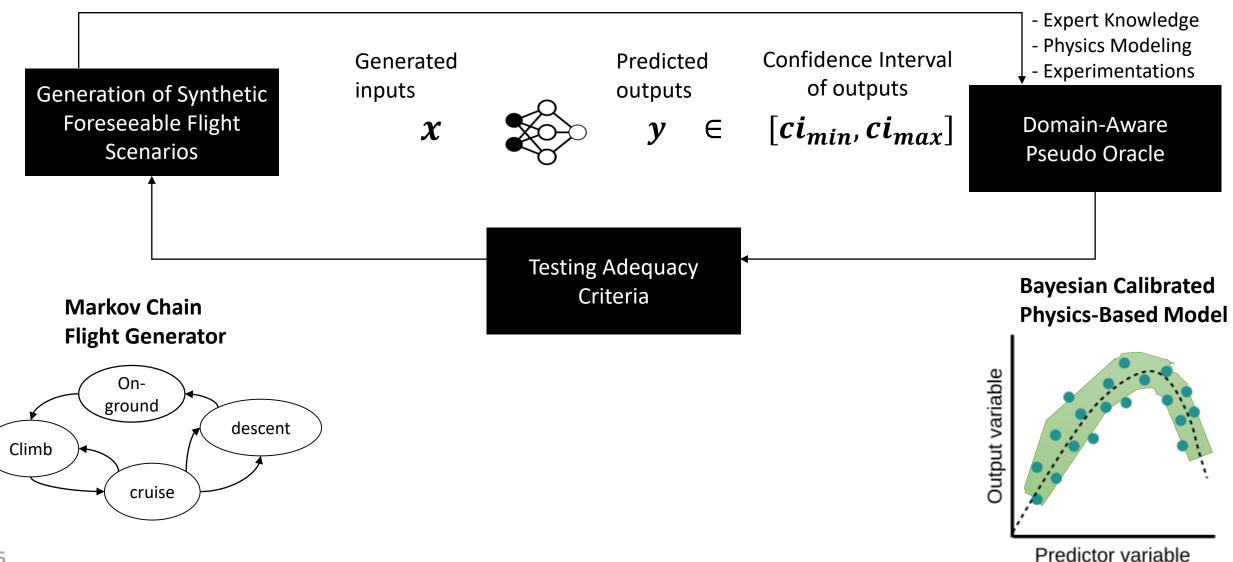




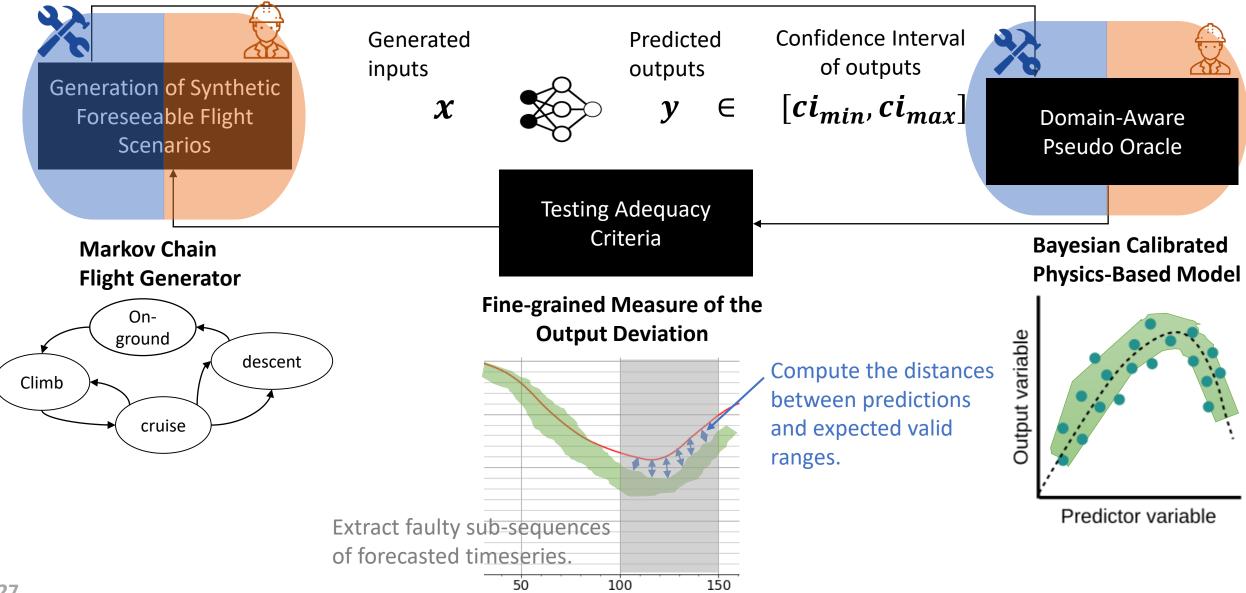
Physics-based Differential Test: Assertions



Physics-based Differential Test: Assertions



Physics-based Differential Test: Improvement



x_i : Speed x Flight Envelope Non-Sequential Train Data Preprocessing **Training Program** Model Data Extraction of steadyx_i: Altitude state flight datapoints Learning Model DL Toolkits For Aircraft x_i: Altitude System Models $x^{\overline{\langle t \rangle}}$ x_i: Speed Sequential **DNN Model** MUT Take Data as Requirements y: Target ✓ Rapid Development Process $\widehat{v}^{<t>}$ 88 Test × Black Box Performance Testing Model Testing Data Domair × Vulnerable to confounding factors **Timeseries Data Flight** Knowledge λ serves to dynamically calibrate the Physics-based Differential DL Testing magnitude of the adversarial loss to Foreach $(X^{(b)}, y^{(b)})$ not overwhelm the original loss. Original ß A Train a Sequential ML Model: Calibrate a PHYS Model: $f_{PHYS}(x) = \hat{y}_{phys}$ Data Fine-tuned DNN Pre-trained $f_{DL}(\mathbf{x}) = \widehat{\mathbf{y}}_{DL}$ Estimate then: DNN [Cmin, Cmax]: PHYS Conf Intl i) Structural Uncertainty \widehat{y} : DL Predictions c_{max} ii) Parameters Uncertainty , yava iii) Experimental Uncertainty Physics-informed Adversarial Training Markovian Stochastic Process for C x_i: Altitude **Flight Generator** Foreach x⁽ⁱ⁾ On-Adversarial Foreach Fit Stochastic Generative Model **Deviation Function** Sensitivity Rules ground 2 Examples for Feature Data Distribution x_i : Speed descent Climb • Foreach r_i $P(x_i, x_i)$ 4 Store if True cruise Foreach $\frac{valid}{\widehat{x}_{i,j}}$ Search Space **Test Input Generation** Adversarial Detection $[x^{< t_{\mathcal{S}}>}, x^{< t_{\mathcal{S}}+m>}]$: Adversarial Region 0 Definition Assert that DL predictions are within It represents the adversarial input D 0 the PHYS confidence intervals: regions for which the predictions are not consistent with the X Foreseeable Data Constraints $\forall x, f_{DL}(x) = \hat{y}_{DL} \notin [c_{min}, c_{max}]$ physics-based model. Physics-based Adversarial Testing ts $t_s + m$

DL-based A/C System Performance Models

Need for Domain-Aware DL Testing Models

c_{min}