

Domain-Aware Deep Learning Testing for Aircraft Models

Houssem Ben Braiek, Ph.D. DEEL/Bombardier

DL-based A/C System Performance Models x_j : Speed

Timeseries Data Flight

Challenges of Quality Assurance for DL Models

desired system behaviors

3

Need for Domain-Aware DL Testing Models

Goal of Domain-Aware DL Testing Models

Estimate the **iid performance** of the model for completely **new inputs**.

$$
Err = \sum_{i \in D_{test}} (\widehat{y}^{(i)} - y^{(i)})^2
$$

Use unseen test data \boldsymbol{D}_{test} as a proxy for future entries (x_{new}) .

$$
D_{test} = \{ (x^{(i)}, y^{(i)}) \}_{i \in [1, N]}
$$

Collection of D_{test} **is concerned to the less to the less of the concerned to the costly in aircraft industry** and *Domain**Bomain**Knowledge*

Test the **internal logic/mappings** of the model against the prior knowledge on the nature of the relation between x and y .

Goal of Domain-Aware DL Testing Models

From Deep Learning Perspective: From Engineering Perspective:

Best-fitted DL solution simulates perfectly the designed system behavior under similar or close operating conditions.

A/C performance models should simulate accurately the designed system behavior given any foreseeable operating conditions.

Domain-aware Testing Approaches contribute to close this gap and to steer the DL model development towards solving the real target problem.

Definition of Physics-grounded Sensitivity Rules

Novelty of Physics-guided Adversarial ML

Relying on Physics-grounded Sensitivity rules : **2. For which the prediction should increase 3. For which the prediction should decrease 1. For which the prediction should almost hold** We perform invariance/directional expectation tests.

These represent the revealed adversarial inputs x for which the **predictions are not consistent with the foreknown local sensitivities.**

Types of Physics-based Adversarial Test/Fix

Physics-based Invariance Test/Fix (Steadying)

1. For which the prediction should almost hold

 $x_i \nearrow$, $x_{i+1} \searrow$, ..., $x_n \leftrightarrow \Rightarrow f \leftrightarrow$ **[Rule Spec]**

 $\forall x', \forall i \in I_{pr}: (x_i - x'_i) \le \delta_i$

[Input Perturbation]

 $\Rightarrow |f(x) - f(x')| \leq \epsilon$ **[Test Assertion]**

Altitude $\Rightarrow R(x, x') = \max(tol^2, (f(x) - f(x'))^2)$ $\int -\, tol^2$ [Regularization Term]

Types of Physics-based Adversarial Test/Fix

Physics-based Directional Expectation Test/Fix (Increasing)

2. For which the prediction should increase

 $x_i \nearrow$, $x_{i+1} \searrow$, ..., $x_n \leftrightarrow \Rightarrow f \nearrow$ **[Rule Spec]**

 $\forall x', \forall i \in I_{inc}, (x_i - x'_i) \leq \delta_i$

[Signed Input Perturbation]

 $\Rightarrow f(x) \geq f(x')$

[Test Assertion]

 $\Rightarrow R(x,x')=(\max\!\big(tol,f(x)-f(x')\big)-tol)^2$ [Regularization Term]

Altitude

Types of Physics-based Adversarial Test/Fix

Physics-based Directional Expectation Test/Fix (Decreasing)

3. For which the prediction should decrease

 $x_i \nearrow$, $x_{i+1} \searrow$, ..., $x_n \leftrightarrow \Rightarrow f \searrow$ **[Rule Spec]**

 $\forall x', \forall i \in I_{dec} : (x_i - x'_i) \le \delta_i$

[Signed Input Perturbation]

 $\Rightarrow f(x) \leq f(x')$ **[Test Assertion]**

 $\Rightarrow R(x,x')=(\max(tol,f(x')-f(x))-tol)^2$ [Regularization Term]

Altitude

Study Cases for Empirical Evaluation

Base Model

Some Results of the Empirical Evaluation

Comparison between #adversarials Before and After fine-tuning

Comparison between unscaled RMSE Before and After fine-tuning

Definition of Physics-based Margin Forecast

Design Both Types of Models

 \widehat{y} : DL Predictions **t Train a Sequential ML Model:** $f_{DL}(x; \theta) = \hat{y}_{DL}$ Calibrate a PHYS Model: $f_{PHYS} (x; \theta) = \hat{y}_{phys}$ **Estimate then: i) Parameters Uncertainty ii) Structural Uncertainty iii) Experimental Uncertainty** $[c_{min}, c_{max}]$: PHYS Conf Intl **t** ϵ_{min} ϵ_{max} $\widehat{\mathbf{y}}_{phys}$ B $f_{DL}(x;\theta)$: Universal Approximation Function Inputs x predicted outputs $\widehat{\mathbf{y}}_{\textit{DL}}$ actual outputs $\mathbf y$ Distance Loss Estimation Update Parameters $\boldsymbol{\theta}$ to minimize the loss *Data-driven Statistical Learning Bayesian Inference for Model Calibration* f_{PHYS} (x; θ): Parametric Solution for Differential Equations θ : Weights & Biases : θ : Defined Quantities & Coefficients $p(\theta | \hat{y}_{phys}, X) \propto p(\hat{y}_{phys} | \theta, X) \times p(\theta | X)$ Posterior Probability Data Likelihood Prior Probability **i) Parameters Uncertainty** $\rightarrow \forall \alpha \in \theta$ **,** $\alpha \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha})$ ii) Structural Uncertainty $\;\rightarrow\;\;{\rm y}_{actual}\;\sim\;{\rm N} \big({\widehat{\rm y}}_{phys},\;\sigma_{\rm y} \big)$ **iii) Experimental Uncertainty** $\rightarrow y_{true} \sim \mathcal{N}(y_{actual}, \varepsilon_{noise})$ **18**

Physics-based Differential DL Testing

19

Physics-based Differential Test: Workflow

Physics-based Differential Test: Assertions

Physics-based Differential Test: Assertions

Physics-based Differential Test: Improvement

x_i : Speed x Flight Envelope **Non-Sequential Train Data Preprocessing Training Program** Model **Data** Extraction of steady x_i : Altitude state flight datapoints **Learning Model DL Toolkits For Aircraft** x_i : Altitude **System Models** $x^{\lt t}$ x_i : Speed $h^{< t}$ Sequential **DNN Model MUT** $^\prime$ Take Data as Requirements y : Target \checkmark Rapid Development Process 88 **Test** \times Black Box **Performance Testing Model Testing Data** Domair × Vulnerable to confounding factors **Timeseries Data Flight** Knowledge λ serves to dynamically calibrate the Physics-based Differential DL Testing magnitude of the adversarial loss to Foreach $(X^{(b)}, Y^{(b)}$ not overwhelm the original loss. Original Ø Calibrate a PHYS Model: $f_{PHYS} (x) = \hat{y}_{phys}$ Train a Sequential ML Model: Data **P**
 \Rightarrow Se Fine-tuned $\Longrightarrow \boxed{loss_{orig}\big(X^{(b)}, y^{(b)}\big) + \lambda^*\widetilde{R_{phys}}\big(\widehat{X}_{adv}^{(b)}, D^{(b)}\big)}$ $f_{DL}(x) = \hat{y}_{DL}$ Pre-trained @ **Estimate then: DNN** $[c_{min}, c_{max}]$: PHYS Conf Intl i) Structural Uncertainty $\widehat{\mathbf{\mathcal{V}}}$: DL Predictions c_{max} ii) Parameters Uncertainty iii) Experimental Uncertainty **Physics-informed Adversarial Training Markovian Stochastic Process for** a x_i : Altitude **Flight Generator** Foreach $x^{(i)}$ O On-Adversarial Foreach **Fit Stochastic Generative Model Deviation Function Sensitivity Rules** ground Ø **Examples** for Feature Data Distribution x_i : Speed descent Climb \bullet Foreach r_i $P(x_i, x_i)$ Store if True cruise Foreach $\frac{valid}{\widehat{x}_{i,j}}$ **Search Space Adversarial Detection Test Input Generation** $\lceil \pmb{\chi}^{< t_s>}, \pmb{\chi}^{< t_s + m>}\rceil$: Adversarial Region O **Definition** Assert that DL predictions are within It represents the adversarial input 6 ❸ the PHYS confidence intervals: regions for which the predictions are not consistent with the <u>kit</u> **Foreseeable Data Constraints** $\forall x, f_{DL}(x) = \hat{y}_{DL} \notin [c_{min}, c_{max}]$ physics-based model. **Physics-based Adversarial Testing:** t_{s} t_s+m

DL-based A/C System Performance Models

Need for Domain-Aware DL Testing Models

 $\sqrt{\hat{y}}_{avg}$

 c_{min}