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DL-based A/C System Performance Models

DL Toolkits For Aircraft 
Models

𝒙𝒊: Altitude

𝒙𝒋: Speed
t

t

𝒚: Target 

t

Extraction of steady-
state flight datapoints

𝒚

𝒙𝒋: Speed

𝒙𝒊: Altitude

Flight 
Envelope Non-Sequential 

Model

𝒙

ෝ𝒚

Sequential 
MUT

𝒙<𝒕>

ෝ𝒚<𝒕>

𝒉<𝒕>

Timeseries Data Flight

 Take Data as Requirements
 Rapid Development Process

Black Box
Vulnerable to confounding factorsBUT
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Data Preprocessing

Learning Model

Training Program

DNN Model

Application-specific 

Requirements

Train 
Data

Test 
Data

Apriori Unknown

Risk of selection bias: 
nonrepresentative of all 

desired system behaviors

Challenges of Quality Assurance for DL Models 

Performance Testing

Pipeline 
Underspecification

Z

X Y

Shortcut Learning

Overfitting

Model Misconceptions

written to find 
the best-fitted 

model
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Data Preprocessing

Learning Model

Training Program

DNN Model

Train 
Data

Test 
Data Model Testing

Need for Domain-Aware DL Testing Models 

Performance Testing
Domain 

Knowledge
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Unknown

𝒇,𝒘

𝒚
𝒙

𝒇∗ ? 𝒘∗?

Use unseen test data 𝑫𝒕𝒆𝒔𝒕 as a 
proxy for future entries (𝒙𝒏𝒆𝒘).

Estimate the iid performance of the 
model for completely new inputs.

Tradeoff

Statistical Testing Model Testing

Test the internal logic/mappings of the 
model against the prior knowledge on the 
nature of the relation between 𝒙 and 𝒚.

𝑬𝒓𝒓 = 

𝒊∈𝑫𝒕𝒆𝒔𝒕

ෝ𝒚 𝒊 − 𝒚 𝒊 𝟐

𝑫𝒕𝒆𝒔𝒕 = 𝒙 𝒊 , 𝒚 𝒊
i∈[1,N]

Collection of 𝑫𝒕𝒆𝒔𝒕 is 
costly in aircraft industry

Domain 
Knowledge

Domain-Aware  
Testing
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Goal of Domain-Aware DL Testing Models 



Goal of Domain-Aware DL Testing Models 

Best-fitted DL solution simulates 
perfectly the designed system 
behavior under similar or close 

operating conditions.

A/C performance models should 
simulate accurately the designed 

system behavior given any 
foreseeable operating conditions.

Domain-aware Testing Approaches 
contribute to close this gap and to steer 

the DL model development towards 
solving the real target problem.

From Deep Learning Perspective: From Engineering Perspective:
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Physics-guided Adversarial Machine LearningPhysics-guided Adversarial Machine Learning



Domain Expert’s  
Knowledge

System-related Physics 
Processes

Sensitivity Rule-based 
Perturbations 

Tested and approved 
by Aircraft Engineers

Non-Sequential ML 
applied on A/C 

performance models

Evaluation On

Definition of Physics-grounded Sensitivity Rules

𝒙

ෝ𝒚
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𝜹-local adversarial 
robustness

Altitude

Speed Flight Envelope

A steady-state 
flight

====
==

==
====

+
++ +

+
+

+

-
- - -

-

-

-
-

-

-

These represent the revealed adversarial inputs 𝒙 for which the 
predictions are not consistent with the foreknown local sensitivities.

Novelty of Physics-guided Adversarial ML

Relying on Physics-grounded Sensitivity rules :

2. For which the prediction should increase

3. For which the prediction should decrease

1. For which the prediction should almost hold

We perform invariance/directional expectation tests.

9

∀ 𝑥′: 𝑥 − 𝑥′ 𝑝 ≤ 𝛿

⇒ 𝑓 𝑥 − 𝑓 𝑥′ ≤ 𝜖



Types of Physics-based Adversarial Test/Fix

Altitude

Speed Flight Envelope

A steady-state 
flight

====
==

==
====

+
++ +

+
+

+

-
- - -

-

-

-
-

-

-

∀ 𝒙′, ∀𝒊 ∈ 𝑰𝒑𝒓: (𝒙𝒊 − 𝒙𝒊
′) ≤ 𝜹𝒊

Physics-based Invariance Test/Fix (Steadying)

1. For which the prediction should almost hold

⇒ |𝒇 𝒙 − 𝒇 𝒙′ | ≤ 𝝐

𝒙𝒊 ↗ , 𝒙𝒊+𝟏 ↘ ,… , 𝒙𝒏 ↔ ⇒ 𝒇 ↔

⇒ 𝑹 𝒙, 𝒙′ = 𝐦𝐚𝐱(𝒕𝒐𝒍𝟐, 𝒇 𝒙 − 𝒇 𝒙′
𝟐
) − 𝒕𝒐𝒍𝟐

Revealed Adversarial Examples

[Rule Spec]

[Input Perturbation]

[Test Assertion]

[Regularization Term]



Types of Physics-based Adversarial Test/Fix

Altitude

Speed Flight Envelope

A steady-state 
flight

====
==

==
====

+
++ +

+
+

+

-
- - -

-

-

-
-

-

-

∀ 𝒙′, ∀𝒊 ∈ 𝑰𝒊𝒏𝒄, 𝒙𝒊 − 𝒙𝒊
′ ≤ 𝜹𝒊

2. For which the prediction should increase

⇒ 𝒇 𝒙 ≥ 𝒇 𝒙′

𝒙𝒊 ↗ , 𝒙𝒊+𝟏 ↘ ,… , 𝒙𝒏 ↔ ⇒ 𝒇 ↗

⇒ 𝑹 𝒙, 𝒙′ = (𝐦𝐚𝐱 𝒕𝒐𝒍, 𝒇 𝒙 − 𝒇 𝒙′ − 𝒕𝒐𝒍)𝟐

Physics-based Directional Expectation Test/Fix (Increasing)

[Rule Spec]

[Signed Input Perturbation]

[Test Assertion]

[Regularization Term]

Revealed Adversarial Examples



Types of Physics-based Adversarial Test/Fix

Altitude

Speed Flight Envelope

A steady-state 
flight

====
==

==
====

+
++ +

+
+

+

-
- - -

-

-

-
-

-

-

∀ 𝒙′, ∀𝒊 ∈ 𝑰𝒅𝒆𝒄 ∶ 𝒙𝒊 − 𝒙𝒊
′ ≤ 𝜹𝒊

3. For which the prediction should decrease

⇒ 𝒇 𝒙 ≤ 𝒇 𝒙′

𝒙𝒊 ↗ , 𝒙𝒊+𝟏 ↘ ,… , 𝒙𝒏 ↔ ⇒ 𝒇 ↘

⇒ 𝑹 𝒙, 𝒙′ = (𝐦𝐚𝐱 𝒕𝒐𝒍, 𝒇 𝒙′ − 𝒇 𝒙 − 𝒕𝒐𝒍)𝟐

Physics-based Directional Expectation Test/Fix (Decreasing)

[Rule Spec]

[Signed Input Perturbation]

[Test Assertion]

[Regularization Term]

Revealed Adversarial Examples



yes

Original 
Data

Search Space 
Definition

Sensitivity Rules

Foreach

𝒙(𝒊)

Foreach 𝒓𝒋

Test Input Generation

Foreach
𝒓𝒋

Pre-trained
DNN 

Foreseeable Data Constraints 

Deviation Function

Foreach
valid
ෝ𝒙𝒊,𝒋

Adversarial Detection

Adversarial 
Examples

Store if True 

1

1

2

3

2

3

3

4

4

Foreach (𝑿(𝒃), 𝒚(𝒃))

𝒍𝒐𝒔𝒔𝒐𝒓𝒊𝒈 𝑿(𝒃), 𝒚(𝒃) + 𝝀 𝑹𝒑𝒉𝒚𝒔
𝑿𝒂𝒅𝒗

𝒃
, 𝑫(𝒃)

𝝀 serves to dynamically calibrate the 
magnitude of the adversarial loss to 

not overwhelm the original loss.

Fine-tuned
DNN 

5

6

7

Physics-based Adversarial Testing

Physics-informed Adversarial Training
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Study Cases for Empirical Evaluation

Base Model 

Feedforward Neural Networks

Model Predicted Target Description

A/C Perf 𝛼: angle of attack The model maps steady-state angle of 
attack (α) to features related to flight 
conditions and wing configurations.

WAI. Perf 𝑇𝑠𝑘𝑖𝑛
𝑏 : A-wing leading-edge skin temperature The model maps the states of skin 

temperature sensors to features related 
to flight conditions, wing configurations, 
and high-pressure pneumatic system 
conditions at the wing root.

𝑇𝑠𝑘𝑖𝑛
𝑏 : B-wing leading-edge skin temperature

Aircraft 
Perf. Data

Wing 
Anti-Icing
Perf. Data

Datasets
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Some Results of the Empirical Evaluation
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Comparison between #adversarials Before and After fine-tuning

Comparison between unscaled RMSE Before and After fine-tuning



Physics-guided Adversarial Machine Learning

Physics-based Differential DL Testing



Domain Expert’s  
Knowledge

System-related Physics 
Processes

Tested and approved 
by Aircraft EngineersSequential ML 

applied on A/C 
performance models

Evaluation On

Definition of Physics-based Margin Forecast
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𝒙<𝒕>

ෝ𝒚<𝒕>

𝒉<𝒕>

Bayesian Calibrated
Physics Model

To forecast the expected tendency 
as an evolving margin over time

t

𝒄𝒎𝒊𝒏

𝒄𝒎𝒂𝒙



Design Both Types of Models

ෝ𝒚: DL Predictions 

t

Train a Sequential ML Model: 
𝒇𝑫𝑳 𝒙; 𝜽 = ෝ𝒚𝑫𝑳

A Calibrate a PHYS Model: 𝒇𝑷𝑯𝒀𝑺 𝒙; 𝜽 = ෝ𝒚𝒑𝒉𝒚𝒔
Estimate then: 

i) Parameters Uncertainty 
ii) Structural Uncertainty 
iii) Experimental Uncertainty

[𝒄𝒎𝒊𝒏, 𝒄𝒎𝒂𝒙]: PHYS Conf Intl

t

𝒄𝒎𝒊𝒏

𝒄𝒎𝒂𝒙

ෝ𝒚𝒑𝒉𝒚𝒔

B

𝒇𝑫𝑳 𝒙; 𝜽 : Universal Approximation Function

Inputs 𝒙

predicted 
outputs ෝ𝒚𝑫𝑳

actual 
outputs 𝒚

Distance

Loss Estimation

Update
Parameters

𝜽
to minimize 
the loss

Data-driven 
Statistical 
Learning 

Bayesian 
Inference for 

Model Calibration 

𝒇𝑷𝑯𝒀𝑺 𝒙; 𝜽 : Parametric Solution for Differential Equations

𝜽: Weights & Biases 𝜽: Defined Quantities & Coefficients

𝑝 𝜃 ෝ𝒚𝒑𝒉𝒚𝒔, 𝑋 ∝ 𝑝 ෝ𝒚𝒑𝒉𝒚𝒔 𝜃, 𝑋 × 𝑝(𝜃|𝑋)

Prior ProbabilityPosterior Probability Data Likelihood

i) Parameters Uncertainty     ∀𝛼 ∈ 𝜃, 𝛼 ~𝒩(𝜇𝛼, 𝜎𝛼)

ii) Structural Uncertainty    𝑦𝑎𝑐𝑡𝑢𝑎𝑙 ~ 𝒩 ො𝑦𝑝ℎ𝑦𝑠, 𝜎𝑦

iii) Experimental Uncertainty  𝑦𝑡𝑟𝑢𝑒 ~𝒩(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 , 𝜀𝑛𝑜𝑖𝑠𝑒)18



Physics-based Differential DL Testing

ෝ𝒚: DL Predictions 

t

Train a Sequential ML Model: 
𝒇𝑫𝑳 𝒙 = ෝ𝒚𝑫𝑳

A Calibrate a PHYS Model: 𝒇𝑷𝑯𝒀𝑺 𝒙 = ෝ𝒚𝒑𝒉𝒚𝒔
Estimate then: 

i) Parameters Uncertainty 
ii) Structural Uncertainty 
iii) Experimental Uncertainty

[𝒄𝒎𝒊𝒏, 𝒄𝒎𝒂𝒙]: PHYS Conf Intl

t

𝒄𝒎𝒊𝒏

𝒄𝒎𝒂𝒙

ෝ𝒚𝒂𝒗𝒈

B

Assert that DL predictions are within 
the PHYS confidence intervals:

∀𝒙, 𝒇𝑫𝑳 𝒙 = ෝ𝒚𝑫𝑳 ∉ 𝒄𝒎𝒊𝒏, 𝒄𝒎𝒂𝒙

It represents the adversarial input 
regions for which the predictions 

are not consistent with the 
physics-based model.

𝒙<𝒕𝒔>, 𝒙<𝒕𝒔+𝒎> : Adversarial Region

t
𝒕𝒔 𝒕𝒔 +𝒎

D

C 𝒙𝒊: Altitude

𝒙𝒋: Speed
t

t

On-
ground

Climb
descent

cruise

Markovian Stochastic Process for 
Flight Generator

𝑷(𝒙𝒊, 𝒙𝒋)

Fit Stochastic Generative Model 
for Feature Data Distribution
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Predicted 
outputs

Domain-Aware
Pseudo Oracle

Confidence Interval 
of outputsGeneration of Synthetic 

Foreseeable Flight 
Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

- Expert Knowledge
- Physics Modeling
- ExperimentationsGenerated 

inputs

Physics-based Differential Test: Workflow
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Predicted 
outputs

Domain-Aware
Pseudo Oracle

Confidence Interval 
of outputsGeneration of Synthetic 

Foreseeable Flight 
Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

- Expert Knowledge
- Physics Modeling
- ExperimentationsGenerated 

inputs

on-ground

On-
ground

Climb
descent

cruise

Physics-based Differential Test: Data Generation
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Predicted 
outputs

Confidence Interval 
of outputsGeneration of Synthetic 

Foreseeable Flight 
Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

Generated 
inputs

On-
ground

Climb
descent

cruise

climb

Physics-based Differential Test: Data Generation

Domain-Aware
Pseudo Oracle

- Expert Knowledge
- Physics Modeling
- Experimentations
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Predicted 
outputs

Confidence Interval 
of outputsGeneration of Synthetic 

Foreseeable Flight 
Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

Generated 
inputs

On-
ground

Climb
descent

cruise

cruise

Physics-based Differential Test: Data Generation

Domain-Aware
Pseudo Oracle

- Expert Knowledge
- Physics Modeling
- Experimentations
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Predicted 
outputs

Confidence Interval 
of outputsGeneration of Synthetic 

Foreseeable Flight 
Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

Generated 
inputs

On-
ground

Climb
descent

cruise

descent

Physics-based Differential Test: Data Generation

Domain-Aware
Pseudo Oracle

- Expert Knowledge
- Physics Modeling
- Experimentations
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Predicted 
outputs

Confidence Interval 
of outputsGeneration of Synthetic 

Foreseeable Flight 
Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

Generated 
inputs

On-
ground

Climb
descent

cruise

Markov Chain 
Flight Generator

Frame possible 
valid outputs into 
a valid CI interval

Physics-based Differential Test: Assertions

Domain-Aware
Pseudo Oracle

- Expert Knowledge
- Physics Modeling
- Experimentations
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Predicted 
outputs

Confidence Interval 
of outputsGeneration of Synthetic 

Foreseeable Flight 
Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

Generated 
inputs

Physics-based Differential Test: Assertions

On-
ground

Climb
descent

cruise

Bayesian Calibrated 
Physics-Based ModelMarkov Chain 

Flight Generator

Domain-Aware
Pseudo Oracle

- Expert Knowledge
- Physics Modeling
- Experimentations
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Predicted 
outputs

Confidence Interval 
of outputs

Generation of Synthetic 
Foreseeable Flight 

Scenarios

𝒚 ∈ [𝒄𝒊𝒎𝒊𝒏, 𝒄𝒊𝒎𝒂𝒙]𝒙

Testing Adequacy 
Criteria

Generated 
inputs

Physics-based Differential Test: Improvement

On-
ground

Climb
descent

cruise

Bayesian Calibrated 
Physics-Based Model

Markov Chain 
Flight Generator

Compute the distances 
between predictions 
and expected valid 
ranges.

Extract faulty sub-sequences 
of forecasted timeseries. 

Fine-grained Measure of the 
Output Deviation

Domain-Aware
Pseudo Oracle
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