Ingenuity
in Flight.

Domain-Aware Deep Learning Testing for Aircraft Models

Houssem Ben Braiek, Ph.D. DEEL/Bombardier



DL-based A/C System Performance Models
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Challenges of Quality Assurance for DL Models
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Need for Domain-Aware DL Testing Models
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Goal of Domain-Aware DL Testing Models

Statistical Testing

Tradeoff

Model Testing

Estimate the iid performance of the
model for completely new inputs.
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Use unseen test data Dy, as a
proxy for future entries (X, ew)-
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Goal of Domain-Aware DL Testing Models

From Deep Learning Perspective: From Engineering Perspective:
Best-fitted DL solution simulates A/C performance models should
perfectly the designed system simulate accurately the designed
. . . ﬁ . .
behavior under similar or close ; system behavior given any
operating conditions. foreseeable operating conditions.

Domain-aware Testing Approaches
contribute to close this gap and to steer
the DL model development towards
solving the real target problem.



&@ Physics-guided Adversarial Machine Learning
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Definition of Physics-grounded Sensitivity Rules
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Novelty of Physics-guided Adversarial ML

Speed Flight Envelope

A steady-state Relying on Physics-grounded Sensitivity rules :

d-local adversarial
robustness

V't |lx—x"|[, < 6
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We perform invariance/directional expectation tests.

1. For which the prediction should almost hold

2. For which the prediction should increase

3. For which the prediction should decrease

Altitude
<@g Theserepresent the revealed adversarial inputs x for which the
~~.2.- predictions are not consistent with the foreknown local sensitivities.




Types of Physics-based Adversarial Test/Fix

Physics-based Invariance Test/Fix (Steadying)

Speed Flight Envelope
N 1. For which the prediction should almost hold
A steady-state X; 7 Xpaq N e, Xy © S f O [Rule Spec]
vV x' Vi€ Ipr: (x; — x;) < 6; [Input Perturbation]
= |f(x) — f(x’)| <e€ [Test Assertion]
2
- = R(x,x'") = max(tol? (f x)—f (x’)) ) — tol? [Regularization Term]
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Types of Physics-based Adversarial Test/Fix

Physics-based Directional Expectation Test/Fix (Increasing)

Speed Flight Envelope
N 2. For which the prediction should increase
A steady-stat
POy R Xi 7, Xix1 N, e, Xp© > f 7 [Rule Spec]
VX', Vi€ I, (x; — x;) < §; [Signed Input Perturbation]
5 f(x) > f(x’) [Test Assertion]
= R(x,x') = (max(tol’f(x) — f(x’)) — tol)z[ReguIarization Term]
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Speed

A steady-state

Types of Physics-based Adversarial Test/Fix

Physics-based Directional Expectation Test/Fix (Decreasing)

Flight Envelope
3. For which the prediction should decrease

Xi 7 Xiz1 N, e, X © 2N [Rule Spec]
\4 X’,Vi € Idec : (xi — x;) < 5i [Signed Input Perturbation]
= f(x) < f(x’) [Test Assertion]

= R(x,x'") = (max(tol, f(x") — f(x)) — tol)?[Regularization Term]
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A serves to dynamically calibrate the
magnitude of the adversarial loss to

Original Foreach ( X®) y(b)) e not overwhelm the original loss.
W
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Study Cases for Empirical Evaluation

Datasets Base Model
. Wing
Aircraft ‘1 Feedforward Neural Networks
Anti-lcing
Perf. Data
Perf. Data

A/C Perf a: angle of attack The model maps steady-state angle of
attack (a) to features related to flight
conditions and wing configurations.

WALI. Perf stkin: A-wing leading-edge skin temperature The model maps the states of skin

temperature sensors to features related
to flight conditions, wing configurations,
and high-pressure pneumatic system
conditions at the wing root.

TS ;,,: B-wing leading-edge skin temperature



Some Results of the Empirical Evaluation

Comparison between #adversarials Before and After fine-tuning

SYS G pre-fixed | post-fixed | Improv.(%)
Random | 5267 1012 80.78%
A-C Perf. PSO 39551 5747 85.46%
GA 2850 636 77.68%
Random | 509 0 100%
WAI Perf. | PSO 20545 18 99.91%
GA 459 4 99.12%
Comparison between unscaled RMSE Before and After fine-tuning
SYS Target | pre-fixed | Algo post-fixed
Random | 0.497°
A-C Perf. Q 0.498° PSO 0.996°
GA 0.444°
Random | 4.729°C
in 4.088°C PSO 4.422°C
GA 3.979°C
WAI Pert. Random | 7.921°C
Té’km 7.524°C PSO 6.826°C
GA 7.163°C




&@ Physics-guided Adversarial Machine Learning
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Definition of Physics-based Margin Forecast
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Design Both Types of Models

° Train a Sequential ML Model: e Calibrate a PHYS Model: fpyys (x; 0) = Yppys
fpr (x;0) =yp; Estimate then:

¥: DL Predictions i) Parameters Uncertainty

ii) Structural Uncertainty ‘

\/ iii) Experimental Uncertainty

[Cinin» Cmax]: PHYS Conf Intl

\ Cmax

.t ~
fpr (x; 8): Universal Approximation Function ! Fpuys (x; @): Parametric Solution for Differential Equations
/
0: Weights & Biases / 0: Defined Quantities & Coefficients
/
/
Data-driven Inputs x / Bayesian R R
Statistical ! Inference for p(8|y phys» X ) X p(y phyS|H'X ) X p(0]X)
Learning | Model Calibration T
/ . .-
predicted Update / Posterior Probability Data Likelihood Prior Probability
A~ /
outputs yp; Parameters | . .
Distance | 0 /i) Parameters Uncertainty = Va € 0, a ~ N (U, 0g4)
sctual to minimize |/
theloss  / i) Structural Uncertainty = V. tual ~ ]V‘(yphys, O'y)

outputs y j
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Physics-based Differential DL Testing

° Train a Sequential ML Model:
for (x) =YpyL
y: DL Predictions

\/ iii) Experimental Uncertainty

e Calibrate a PHYS Model: fpyys (X) = Ypnys
Estimate then:

i) Parameters Uncertainty [€min Cmax]: PHYS Conf Intl
ii) Structural Uncertainty ‘
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Q Assert that DL predictions are within
the PHYS confidence intervals:

Vx, fpr(x) = Yp1 € [Crnins Cmax]
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Fit Stochastic Generative Model
for Feature Data Distribution

P(x;, xj)
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Physics-based Differential Test: Workflow

- Expert Knowledge
- Physics Modeling

Generated Predicted Confidence Interval _ Experimentations
Generation of Synthetic inputs outputs of outputs
Foreseeable Flight X y € [Clminr Clmax] Domain-Aware

Scenarios Pseudo Oracle

Testing Adequacy

Criteria




- Expert Knowledge
- Physics Modeling
- Experimentations

Physics-based Differential Test: Data Generation

Confidence Interval

Generated Predicted
Generation of Synthetic inputs outputs of outputs
X y € [Ciminr Cimax] Domain-Aware
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Foreseeable Flight
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- Expert Knowledge
- Physics Modeling
- Experimentations

Physics-based Differential Test: Data Generation
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- Expert Knowledge
- Physics Modeling
- Experimentations

Physics-based Differential Test: Data Generation

Confidence Interval

Generated Predicted
Generation of Synthetic inputs outputs of outputs
X y € [Ciminr Cimax] Domain-Aware
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Physics-based Differential Test: Assertions

- Expert Knowledge
- Physics Modeling
- Experimentations

Generated Predicted Confidence Interval
Generation of Synthetic inputs outputs of outputs

Foreseeable Flight X y € [Ciminr Cimax] Domain-Aware
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|
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Markov Chain Criteria
Flight Generator
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Physics-based Differential Test: Assertions

Generated

Generation of Synthetic inputs
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Physics-based Differential Test: Improvement

3%‘ g Generated Predicted Confidence Interval Q%
inputs outputs of outputs 7
Generation of Synthetic . .
Foreseeable Flight X y € [Clmin: Clmax] Domain-Aware
Scenarios Pseudo Oracle
I Testing Adequacy |

Criteria Bayesian Calibrated
Physics-Based Model

Markov Chain
Flight Generator

Fine-grained Measure of the
Output Deviation L .!.,..-'i'“’“.
Compute the distances -% '9«'5 ® ';.p
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and expected valid %— '.
5z ranges. O k.

Extract faulty sub-sequences Predictor variable

of forecasted timeseries.
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DL-based A/C System Performance Models
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A serves to dynamically calibrate the
magnitude of the adversarial loss to

Original Foreach (X(b), y(b)) e not overwhelm the original loss. :
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e Assert that DL predictions are within
the PHYS confidence intervals:

VX, fpr(x) = ¥p1 € [Crmins Cmax]

Need for Domain-Aware DL Testing Models
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Physics-based Differential DL Testing

e Calibrate a PHYS Model: fpyys (X) = Vpnys

Estimate then:

i) Structural Uncertainty
if) Parameters Uncertainty
ili) Experimental Uncertainty
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Markovian Stochastic Process for
Flight Generator
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Fit Stochastic Generative Model
for Feature Data Distribution

P(x;, xj)
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Physics-based Adversarial Testing

i
i
i
i
i
i
i
I
i
i
i
i
i [x=ts=, x=tsT™>] . Adversarial Region
I
i
i
i
i
i
i
i

It represents the adversarial input
regions for which the predictions
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