

Towards Trustworthy Deep Learning Software System

Houssem Ben Braiek, Ph. D.

Deep Learning Software vs Traditional Software

Neural Network Graph Control Flow Graph of

Challenges of Debugging OC. DL Training Programs

The Training Program is "Untestable" Software

There would be no need to write such programs, if the correct answer were known99 Davis and Weyuker, 1981

The Oracle Problem in Practice

Load the dataset

 (x_t) train, y_t train), (x_t) test, y_t test) = fashion mnist.load data()

```
# Normalize the pixel values
x_ train, x_ test = x_ train / 255.0, x_ test / 255.0
```
Define the model

model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax)])

Compile the model model.compile(optimizer=tf.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Train the model with a callback model.fit(x_train, y_train, epochs=10) Can we have the expected values from an oracle ?

def test_params_fashion_mnist_dense_512_relu_10_softmax(model,

oracle params, tolerance=0.01):

for layer in model.layers[1:]: # Extract the learned W&B of each layer actual_weight, actual_bias = layer.get_weights() # Set your expectations for W&B of each layer expected weight, expected bias = oracle params[layer.name] # Check if the weights are nearly equal tf.debugging.assert_near(actual_weight, expected_weight, atol=tolerance) # Check if the biases are nearly equal tf.debugging.assert_near(actual_bias, expected_bias, atol=tolerance) 7

State-of-practice for Training Program Debugging

Implementation Issues

Property-based DL Training Program Debugging

Property-based Testing for Training Programs

Property-based testing for a function

for all $(x, f(x), ...)$ such as precondition(x, $f(x)$, ...) holds property(x, $f(x)$, ...) is true

Property-based testing for components of the training program

for all $(W^{(i)},$ $b^{(i)},$ $A^{(i)},$ $loss^{(i)},$ $acc^{(i)},$...) such as precondition $(X^{(i)}, y^{(i)}, H^{(i)}, ...)$ holds property($W^{(i)}$, $b^{(i)}$, $A^{(i)}$, $loss^{(i)}$, $acc^{(i)}$, ...) is true

Its application for model testing is straightforward:

- Verify if all model outputs f(x) maintain specific properties such as smoothness, invariance, etc., across valid inputs x.

Its application to training program requires adaptation:

- Check if all the intermediate training program states hold some properties for all the valid input data and settings.

Property-based Testing for Training Programs

Potential Property Violations

Methodology

Examine Empirical Studies & StackOverflow

[1] Zhang el al., An Empirical Study on TensorFlow Program Bugs (2018)

[2] Islam et al., A comprehensive study on deep learning bug characteristics (2019)

[3] Humbatova et al., Taxonomy of real faults in deep learning systems (2020)

Build Synthetic Buggy DL training programs


```
# Load the dataset 
# x_train and x_test can be already normalized
(x train, y train), \setminus(x_test, y_test) = fashion{\text{minmax}}.load\ data()
```
Normalize the pixel values x train, x test = x train / 255.0, x test / 255.0

```
# Define the model
model = tf.keras.models.Sequential([
 # Some models start with rescaling the input
  tf.keras.layers.Rescaling(scale=1./255), 
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
```
 \rightarrow The abuse of data re-scaling, often unintentionally, can result in an ill-conditioned loss minimization problem and, at best, a slow learning rate. 15

Activations-related Pitfalls

8

Property-based Verification Routines & Phases

Pre-training Verification Examples

Initialized & first pass

Proper-fitting Verification Examples

Post-fitting Verification Examples

Post-Fitting

B Perf. Degradation With Augmentation

 $accuracy_{decay} < max$

accuracy_{decay} = $\frac{v}{valid_accuracy_without_augmentation}$ valid_accuracy_with_augmentation

Dissimilarity of activation patterns between test and train modes using Centered Kernel Alignment (CKA) for representational similarity measure.

C

Implementation & Performance Evaluation

Underspecification Issues of Unseen Datasets

Why do DL practitioners perceive the value of DL testing differently?

High Risk, Non-Quantifiable Performance …

The Case of Aircraft System Performance Models

Timeseries Data Flights

➔ **A trained NN could illustrate the system performance over the range of included-or-close operational conditions.**

'the equipment, systems, and installations must be designed and installed to ensure they perform their intended functions under all foreseeable operating conditions.' U.S Code of Federal Regulations, parts 23, 25, 27, 29

A trustworthy performance model must be qualified to be representative of system behavior throughout the range of foreseeable operational conditions.

Domain-Aware DL Model Testing

The Need for Domain-Aware DL testing Methods

Estimate the **iid performance** of the model for completely **new inputs**.

$$
Err = \sum_{i \in D_{test}} (\widehat{y}^{(i)} - y^{(i)})^2
$$

Use unseen test data D_{test} as a proxy for future entries (x_{new}) .

$$
\bm{D}_{test} = \{(\bm{x}^{(i)}, \bm{y}^{(i)})\}_{i \in [1,N]}
$$

Collection of D_{test} is **costly in aircraft industry** *Domain*

Test the **internal logic/mappings** of the model against the prior knowledge on the nature of the relation between x and y .

Invariance Tests

These represent the failed inputs for which the predictions are not consistent with the derived invariance tests.

Directional Expectation Tests

These represent the failed inputs for which the predictions are not consistent with the derived directional expectation tests.

End-to-End Workflow of the Proposed Method

Evaluation Models & Results

4.8%

Analogies with other DL Applications

Semantically-preserving Data Transformations

Semantically-preserving Data Transformations

Signal-wise Conversions:

Speed

Pitch

Loudness

Additive Noise Signals:

Random noisy perturbations

Colored noises: white, pink, brown.

Indoor Noises: breathing, footsteps, laughing, clock-tick, etc.

Outdoor Noises: Engine, Fireworks, Rain, Train, etc.

For Images: $(\textcircled{1})$ For Audio Speeches: **For Natural Language Texts** : **Char-level Transformations: Random Insertion Random Swap**

Random Deletion

Word-level Transformations:

Synonym/Embedding Replacement

Random Insertion

Random Swap

Random Deletion

How can we generate valid inputs from complex domains?

As software tests are written in code, DL tests can be produced by DL models !

DeepRoad [1] use GANs:

- map image from source domain to latent domain.

- generate image in the new domain from latent domain.

[1] Zhang et al. DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing. arXiv:1802.02295]

Conclusion

Training Program Bugs

Coding Mistakes

Misconfigurations

Toolkits' Misuse

Property-based Debugging Approach Debugging Approach

Model Misconceptions

Overfitting

Spurious Correlation Shortcut Learning

Pipeline Underspecification

Testing Method

Towards Trustworthy DL Software System

Houssem Ben Braiek, Ph. D.