
Towards Trustworthy Deep 
Learning Software System

Houssem Ben Braiek, Ph. D.



Input

Output

Decision Logic

Input

Hidden 

layers

Output 

layer

Output

Neural Network Graph Control Flow Graph of 

Traditional Program

Old Paradigm

Learn Latent 

Features From 

Data

Manual Written 

logic code

New Paradigm

Software Application Flow Graph 

3

Deep Learning Software vs Traditional Software



Challenges of Debugging 
DL Training Programs

4



The Training Program is “Untestable” Software

Data Preprocessing

Learning Model

Training Algorithm

Model

Seen 

Data

Unseen 

Data
Data Preprocessing Performance Testing

Training Program

Data

Apriori Unknown
The training program 
is written to find the 

best-fitted model

5



There would be no need to write such 
programs, if the correct answer were 
known 

 Davis and Weyuker, 1981

6



The Oracle Problem in Practice

# Load the dataset
(x_train, y_train),(x_test, y_test) = fashion_mnist.load_data()

# Normalize the pixel values
x_train, x_test = x_train / 255.0, x_test / 255.0

# Define the model
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model
model.compile(optimizer=tf.optimizers.Adam(),
       loss='sparse_categorical_crossentropy',
       metrics=['accuracy'])

# Train the model with a callback
model.fit(x_train, y_train, epochs=10)

def test_params_fashion_mnist_dense_512_relu_10_softmax(model, 
                            oracle_params, 
                            tolerance=0.01):
  for layer in model.layers[1:]:
    # Extract the learned W&B of each layer
    actual_weight, actual_bias = layer.get_weights()
    # Set your expectations for W&B of each layer
    expected_weight, expected_bias = oracle_params[layer.name]
    # Check if the weights are nearly equal
    tf.debugging.assert_near(actual_weight, expected_weight, 
                atol=tolerance)
    # Check if the biases are nearly equal
    tf.debugging.assert_near(actual_bias, expected_bias, 
                atol=tolerance)

Can we have the 

expected values 

from an oracle ?

7



Epoch

Accuracy

Loss

Epoch

Watch the training performance, i.e., 

loss and accuracy evolution curves.

Implementation Issues

Model Issues

over/under-sized 

neural network

inappropriate 

regularization

correct

… 

…
 

If the training behaves poorly on the data ?

For novel 

problems or 

data, it is 

challenging to 

set 

expectations 

too…

8

State-of-practice for Training Program Debugging



Property-based DL 
Training Program 
Debugging

9



Property-based Testing for Training Programs

for all (x, f(x), ...)
such as precondition(x, f(x), ...) holds
property(x, f(x), ...) is true

Property-based testing 
for a function

Its application for model testing is 
straightforward:
- Verify if all model outputs f(x) maintain 
specific properties such as smoothness, 
invariance, etc., across valid inputs x.

Property-based testing for components 
of the training program

for all (𝑊(𝑖), 𝑏(𝑖), 𝐴(𝑖), 𝑙𝑜𝑠𝑠(𝑖), 𝑎𝑐𝑐(𝑖), …)
such as precondition (𝑋(𝑖), 𝑦(𝑖), 𝐻(𝑖), …) holds
property(𝑊(𝑖), 𝑏(𝑖), 𝐴(𝑖), 𝑙𝑜𝑠𝑠(𝑖), 𝑎𝑐𝑐(𝑖), …) is true

Its application to training program requires 
adaptation:
- Check if all the intermediate training 
program states hold some properties for all 
the valid input data and settings.  

10



Property-based Testing for Training Programs

11

Program

Pre-processing

Post-processing

Verification

Routines

Potential Property Violations

Program

Original program

Monitoring

Monitored Program

Controlled Run

Debugging Report



Methodology

Practical DL 

Resources
DL Bug 

Reports

Automated 

verification 

routines

Implement debugging 

tools 

Mainstream 

development toolkits

Tested and approved 

by 

DL practitioners

Synthetic Buggy DL 

programs

Real-world Buggy DL 

training programs

Libraries Official 

Documentation

Evaluation

Non-crashing 

Bugs

Training 

Difficulties

Fundamental 

Properties

Heuristics 

Validation 
Benchmark

Testing 
Benchmark

12



Examine Empirical Studies & StackOverflow

Non-crashing Bugs

StackOverflow

‘Tensorflow’ +

Bug-related keywords

…

DL Faults 

Studies 

[1,2,3]

Top-100 Posts

𝑩𝒖𝒈𝒊

𝑩𝒖𝒈𝒋

Manual Inspection of 

𝟏𝟔𝟏 SO Bug Reports

Root Causes & Symptoms

Synthetic Buggy DL 

programs

Pitfalls of DL Training 

Program

construct elaborate

filter

search
DL Bug 

Reports

select

[1] Zhang el al., An Empirical Study on TensorFlow Program Bugs (2018)
[2] Islam et al., A comprehensive study on deep learning bug characteristics (2019)
[3] Humbatova et al., Taxonomy of real faults in deep learning systems (2020)

13



Build Synthetic Buggy DL training programs

DL Bug 

Reports

Bug Root Cause

Original Version

Buggy 

Version
Minimal Code 

Mutation

Bug Symptoms 

validate

improve

Toolkit Official 

Documentation

is_applicable

14



The Catalog  of Pitfalls in DL Training Program

Input Data-related Pitfalls

Connectivity & Custom Ops Pitfalls

Parameters-related Pitfalls

Activations-related Pitfalls

Optimization-related Pitfalls

Regularization-related Pitfalls

𝟒

𝟐

𝟐

𝟓

𝟐

𝟖

# N Principal Program Component Involved Examples

# Load the dataset 
# x_train and x_test can be already normalized
(x_train, y_train), \
(x_test, y_test) = fashion_mnist.load_data()

# Normalize the pixel values
x_train, x_test = x_train / 255.0, x_test / 255.0

# Define the model
model = tf.keras.models.Sequential([
 # Some models start with rescaling the input
 tf.keras.layers.Rescaling(scale=1./255), 
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

➔ The abuse of data re-scaling, often unintentionally, 

can result in an ill-conditioned loss minimization 

problem and, at best, a slow learning rate. 15



Input Data-related Pitfalls

Connectivity & Custom Ops Pitfalls

𝟒

𝟐

# N Principal Program Component Involved Examples

class Custom_CE_Loss(tf.keras.losses.Loss):

  def call(self, y_true, y_pred, inv_rates):   
    weights = tf.reduce_sum(inv_rates * y_true, axis=0)  
    log_y_pred = tf.math.log(y_pred)
    elements = -tf.math.multiply_no_nan(x=log_y_pred, 
                      y=y_true)
    return tf.reduce_mean( 
          weights * tf.reduce_sum(elements, axis=0)
        )
  
model.compile(optimizer='adam',
       loss=Custom_CE_Loss(),
       metrics=['accuracy'])

# Train the model with a callback
model.fit(x_train, y_train, epochs=10)

➔A custom operation may be buggy because the 

reduction is broadcast over the wrong axis. The 

result will be faulty due to this. 

The Catalog  of Pitfalls in DL Training Program

16

Parameters-related Pitfalls

Activations-related Pitfalls

Optimization-related Pitfalls

Regularization-related Pitfalls

𝟐

𝟓

𝟐

𝟖



Parameters-related Pitfalls𝟐

# N Principal Program Component Involved Examples

# Define the model
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu,
    kernel_initializer=RandomNormal(stddev=0.01)),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax,
    kernel_initializer=RandomNormal(stddev=0.01))
])

➔ The choice of initialization has a significant impact 

on the quality of training. Variance of random weights 

should be considered in relation to the size of the 

layer's input. This consideration reduces the risk of 

vanishing or exploding gradients during training.

The Catalog  of Pitfalls in DL Training Program

17

Input Data-related Pitfalls𝟒

Connectivity & Custom Ops Pitfalls𝟐

Activations-related Pitfalls

Optimization-related Pitfalls

Regularization-related Pitfalls

𝟓

𝟐

𝟖



Optimization-related Pitfalls𝟓

# N Principal Program Component Involved Examples

# Build the model
model = tf.keras.models.Sequential([
 tf.keras.layers.Conv1D(filters=64, kernel_size=3,
           strides=1, padding="causal",
           activation="relu",
           input_shape=[window_size, 1]),
 tf.keras.layers.LSTM(64, return_sequences=True),
 tf.keras.layers.LSTM(64),
 tf.keras.layers.Dense(1),
])
# Set the training parameters
model.compile(loss=tf.keras.losses.Huber(), 
       optimizer='sgd',
       metrics=["mae"])

➔ A poor choice of loss function, such as Huber loss 

for demand forecasting (spikes are crucial), prevents 

the identification of useful patterns. 

The Catalog  of Pitfalls in DL Training Program

18

Connectivity & Custom Ops Pitfalls

Parameters-related Pitfalls

Activations-related Pitfalls

Regularization-related Pitfalls

𝟐

𝟐

𝟐

𝟖

Input Data-related Pitfalls𝟒



Regularization-related Pitfalls𝟐

# N Principal Program Component Involved Examples

# Define the model
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 # Induce the discrepancy between train and test mode
 tf.keras.layers.Dropout(0.5)
 # Moving statistics will be shifted at test mode
 tf.keras.layers.BatchNormalization()
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

The Catalog  of Pitfalls in DL Training Program

19

Connectivity & Custom Ops Pitfalls

Parameters-related Pitfalls

Activations-related Pitfalls

Optimization-related Pitfalls

𝟐

𝟐

𝟓

𝟖

Input Data-related Pitfalls𝟒



Activations-related Pitfalls𝟖

# N Principal Program Component Involved Examples

# Define the model
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model
model.compile(optimizer=tf.optimizers.Adam(),
       loss=CategoricalCrossentropy(True),
       metrics=['accuracy'])

➔ The instantiated loss function expects logits, but 

the softmax is applied on the last layer. Thus, the 

logits are subject to redundant softmax applications, 

resulting in pathological learning. 

The Catalog  of Pitfalls in DL Training Program

20

Connectivity & Custom Ops Pitfalls

Parameters-related Pitfalls

Optimization-related Pitfalls

Regularization-related Pitfalls

𝟐

𝟐

𝟓

𝟐

Input Data-related Pitfalls𝟒



Property-based Verification Routines & Phases

Origins

Types

- Applied DL textbooks

- Academic DL lectures

- Industry practical courses

- DL experts’ blogs

- DL practitioners’ forums

- Fundamental Design Principles

- Inefficient Training Traits

𝟏𝟐
Pre-training

Conditions

𝟏𝟓
Proper-fitting 

conditions

3
Post-fitting
Conditions

21



Pre-training Verification Examples

Loss 

Estimation

+

Accuracy 

Evaluation

Initial Loss 

(Random Guess)

+ 

Data 

Dependency:

Loss w.r.t 

Output 1 should 

depend only on 

Input 1. 

(The only non-

zero derivative)   

Validate the 

scale of inputs 

(Normalized)

random weights 

(appropriate variance 

magnitude…)

Initialized & first pass

A

B

C

22



Proper-fitting Verification Examples

Update Parameters

Unstable Activation Distributions

Abnormal Loss Curves

Uncorrelated

Metrics 

(Loss & Accuracy)

On-Fitting

D

C

B

Loss 

Estimation

+

Accuracy 

Evaluation

Given a layer 𝑖

−4 < 𝑙𝑜𝑔10

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠 𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑖

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖

< −1

Unstable Params UpdateA

23



Post-Fitting

Accuracy 

Evaluation

On 

Validation 

Data

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑑𝑒𝑐𝑎𝑦 < 𝑚𝑎𝑥

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑑𝑒𝑐𝑎𝑦 = 
𝑣𝑎𝑙𝑖𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑤𝑖𝑡ℎ_𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑣𝑎𝑙𝑖𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Post-shuffle Loss Spikes A

Perf. Degradation With AugmentationB

Dissimilarity of activation patterns 

between test and train modes using

Centered Kernel Alignment (CKA) for 

representational similarity measure.

C

24

Post-fitting Verification Examples



20 Real-world Buggy DL 
training programs

Precision 

≅

𝟔𝟎%

Vs

Precision 

≅

𝟕𝟓%

The choice of Thresholds in Dynamic 
Property Checking.

These choices  are mitigated by 
considering the persistence of issues 
over iterations. 

25

Implementation & Performance Evaluation



Limitations of DL 
Model Testing

26



Underspecification Issues of Unseen Datasets

Data Preprocessing

Learning Model

Training Algorithm

Model

Seen 

Data

Unseen 

Data
Data Preprocessing Performance Testing

Training Program

Application-specific 

Requirements

Selection Bias / 

Unrepresentativeness 

of all intended system 

behaviors
27



Low Risk High Risk

Quantifiable
Performance 

Outperform the state-of-the-art on 
testing benchmarks, e.g., ImageNet, 

Coco, etc.

Maintain an acceptable performance for a 
critical function under carefully controlled 
conditions, e.g., a custom-made cobot that 

performs repetitive tasks in a 
manufacturing facility.

Non-
Quantifiable
Performance 

Provide added value over legacy 
baselines or fill a gap, e.g., filtering ads, 

recommending movies, etc.

Guarantee an acceptable performance for a 
critical function under all foreseeable 
operational conditions, e.g., a generic-

purpose cobot that assists the elderly with 
household duties.

28

Why do DL practitioners perceive the value of 
DL testing differently?



29

High Risk, Non-Quantifiable Performance …



Altitude

Speed Operating Envelope

Trustworthy Region of 

a Trained Neural Network
(i) Extraction of steady-state flight data points

𝒙𝒊: Altitude

𝒙𝒋: Speed
t

t

𝒚: Target 

t

Timeseries Data Flights

(ii) Preprocessing & Splitting data points into :

➔ A trained NN could illustrate the system performance over the range of 

included-or-close operational conditions. 

‘the equipment, systems, and installations must be 
designed and installed to ensure they perform their 
intended functions under all foreseeable operating 
conditions.’ U.S Code of Federal Regulations, parts 23, 25, 27, 29

A trustworthy performance model must be 
qualified to be representative of system behavior 
throughout the range of foreseeable operational 
conditions.

30

The Case of Aircraft System Performance Models



Domain-Aware DL 
Model Testing

31



Oracle Problem

𝒇, 𝒘

𝒚
𝒙

𝒇∗ ? 𝒘∗?

Use unseen test data 𝑫𝒕𝒆𝒔𝒕 as a 

proxy for future entries (𝒙𝒏𝒆𝒘).

Estimate the iid performance of the 

model for completely new inputs.

Tradeoff

Statistical Testing Model Testing

Test the internal logic/mappings of the 

model against the prior knowledge on the 

nature of the relation between 𝒙 and 𝒚.

𝑬𝒓𝒓 = ෍

𝒊∈𝑫𝒕𝒆𝒔𝒕

ෝ𝒚 𝒊 − 𝒚 𝒊 𝟐

𝑫𝒕𝒆𝒔𝒕 = 𝒙 𝒊 , 𝒚 𝒊
i∈[1,N]

Collection of 𝑫𝒕𝒆𝒔𝒕 is 

costly in aircraft industry
Domain 

Knowledge

Domain-Aware  

Testing

32

The Need for Domain-Aware DL testing Methods

32



Invariance Tests

These represent the failed inputs 𝒙 for which the predictions 

are not consistent with the derived invariance tests.

∀ 𝑥′: 𝑥 − 𝑥′
𝑝 ≤ 𝛿

⇒ |𝑓 𝑥 − 𝑓 𝑥′ | ≤ 𝜖

Perturbation

Test Definition

Feature 2

Feature 1 Valid Input Space

An original 

data point

==
== ==

====

∀ 𝒙′, ∀𝒊 ∈ 𝑰𝒑𝒓: (𝒙𝒊 − 𝒙𝒊
′) ≤ 𝜹𝒊

Invariance Test Definition

⇒ |𝒇 𝒙 − 𝒇 𝒙′ | ≤ 𝝐

𝒙𝒊   , 𝒙𝒊+𝟏  , … , 𝒙𝒏  ⇒ 𝒇 [Rule Spec]

[Signed Perturbation]

[Test Assertion]

33



Directional Expectation Tests

Feature 2

Feature 1 Valid Input Space

An original 

data point +
++

+
+
+

+

-
-

- -
-

-

-
-

-

-

These represent the failed inputs 𝒙 for which the predictions are 

not consistent with the derived directional expectation tests.

∀ 𝒙′, ∀𝒊 ∈ 𝑰𝒊𝒏𝒄, 𝒙𝒊 − 𝒙𝒊
′ ≤ 𝜹𝒊

Directional Expectation Test (Increasing output)  

⇒ 𝒇 𝒙 ≥ 𝒇 𝒙′

𝒙𝒊   , 𝒙𝒊+𝟏  , … , 𝒙𝒏  ⇒ 𝒇 [Rule Spec]

[Signed Perturbation]

[Test Assertion]

∀ 𝒙′, ∀𝒊 ∈ 𝑰𝒅𝒆𝒄 , 𝒙𝒊 − 𝒙𝒊
′ ≤ 𝜹𝒊

Directional Expectation Test (Decreasing output)

⇒ 𝒇 𝒙 ≤ 𝒇 𝒙′

𝒙𝒊   , 𝒙𝒊+𝟏  , … , 𝒙𝒏  ⇒ 𝒇 [Rule Spec]

[Signed Perturbation]

[Test Assertion]

34



Original 

Data

Search Space 

Definition

Sensitivity Rules

Foreach

𝒙(𝒊)

Foreach 𝒓𝒋

Test Input Generation

Foreach

𝒓𝒋

Pre-trained

DNN 

Foreseeable Data Constraints 

Deviation Function

Foreach

valid
ෝ𝒙𝒊,𝒋

Adversarial Detection

Adversarial 

Examples

Store if True 

1

1

2

3

2

3

3

4

4

Foreach (𝑿(𝒃), 𝒚(𝒃))

𝒍𝒐𝒔𝒔𝒐𝒓𝒊𝒈 𝑿(𝒃), 𝒚(𝒃) + 𝝀 𝑹𝒑𝒉𝒚𝒔
෡𝑿𝒂𝒅𝒗

𝒃
, 𝑫(𝒃)

Fine-tuned

DNN 

5

6

7

Physics-based Adversarial Testing

Physics-informed Adversarial Training

End-to-End Workflow of the Proposed Method 

35



Evaluation Models & Results

Model Predicted Target Description

Aircraft(A-C) Performance 
Model

𝛼: angle of attack The model maps steady-state angle of 
attack (α) to features related to flight 
conditions and wing configurations.

Wing Anti-Icing (WAI) 
Performance Model

𝑇𝑠𝑘𝑖𝑛
𝑏 : A-wing leading-edge skin temperature The model maps the states of skin 

temperature sensors to features related 
to flight conditions, wing configurations, 
and high-pressure pneumatic system 
conditions at the wing root.

𝑇𝑠𝑘𝑖𝑛
𝑏 : B-wing leading-edge skin temperature

36

A-C Perf. 
(using 

GA)

•%Fixed Failures 
77.68%

•%Err. Reduction
10.8%

WAI Perf. 
(using 

GA)

•%Fixed Failures 
99.12%

•%Err. Reduction 
4.8%



Analogies with other DL Applications 

Adversarial

Attacks

Feature 2

Feature 1 Valid Input Space

An original 

data point

==
== ==

====

Semantically-preserving 

Data Transformations

Noise  

Perturbation

37



Semantically-preserving Data Transformations

Rotation

Brightness

Partial Erasing

I am happy to finally 

present my research 

work to the public.

I am glad to finally 

present my research 

work to the public.

Char 

Swap
Word 

Replacement

Word 

Deletion

Object Classification Speech Recognition NLP Sentiment Detection

Footsteps Rain

“apple”

“apple”

“apple”

“turn-off”

“turn-off”

“turn-off”

38



Semantically-preserving Data Transformations

For Images: For Audio Speeches: For Natural Language Texts : 

Pixel-value Transformations:

Brightness Contrast

Pixel Perturbation

Blurring

Translation

Scaling

Shearing

Rotation

Partial Erasing

Affine Transformations:

Colored noises: white, pink, brown.

Indoor Noises: breathing, footsteps, 

laughing, clock-tick, etc.

Outdoor Noises: Engine, Fireworks, 

Rain, Train, etc.

Random noisy perturbations

Signal-wise Conversions:

Speed

Loudness

Pitch

Additive Noise Signals:

Char-level Transformations:

Word-level Transformations:

Random Insertion

Random Swap

Random Deletion

Synonym/Embedding 

Replacement

Random Insertion

Random Swap

Random Deletion

39



How can we generate valid inputs from 
complex domains?

Complex Domain Space

An 

original 

data point

40



As software tests are written in code,
DL tests can be produced by DL models !

DeepRoad [1] use GANs:
- map image from source domain to latent 

domain.

- generate image in the new domain from 

latent domain.

[1] Zhang et al. DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing. arXiv:1802.02295] 

Model Under Test 

Consistency

Smoothness

Desired/Trustworthy 

Model Characteristics

Test Adequacy Criteria

Counter examples / Property Violations

(𝑋, 𝑦)

Robustness 

41



Property-based 

Debugging Approach
Domain-Aware 

Testing Method

Conclusion

42

Training Program Bugs

Coding Mistakes

Misconfigurations

Toolkits’ Misuse

Model Misconceptions

Pipeline 

Underspecification

Z

X Y

Spurious Correlation 

Shortcut Learning

Overfitting



Towards Trustworthy DL Software System
Houssem Ben Braiek, Ph. D.

43


	Slide 1: Towards Trustworthy Deep Learning Software System
	Slide 3
	Slide 4
	Slide 5: The Training Program is “Untestable” Software
	Slide 6
	Slide 7: The Oracle Problem in Practice
	Slide 8: State-of-practice for Training Program Debugging
	Slide 9
	Slide 10: Property-based Testing for Training Programs
	Slide 11: Property-based Testing for Training Programs
	Slide 12: Methodology
	Slide 13: Examine Empirical Studies & StackOverflow
	Slide 14: Build Synthetic Buggy DL training programs
	Slide 15: The Catalog  of Pitfalls in DL Training Program
	Slide 16: The Catalog  of Pitfalls in DL Training Program
	Slide 17: The Catalog  of Pitfalls in DL Training Program
	Slide 18: The Catalog  of Pitfalls in DL Training Program
	Slide 19: The Catalog  of Pitfalls in DL Training Program
	Slide 20: The Catalog  of Pitfalls in DL Training Program
	Slide 21: Property-based Verification Routines & Phases
	Slide 22: Pre-training Verification Examples
	Slide 23: Proper-fitting Verification Examples
	Slide 24: Post-fitting Verification Examples
	Slide 25: Implementation & Performance Evaluation
	Slide 26
	Slide 27: Underspecification Issues of Unseen Datasets
	Slide 28: Why do DL practitioners perceive the value of DL testing differently?
	Slide 29: High Risk, Non-Quantifiable Performance …
	Slide 30: The Case of Aircraft System Performance Models
	Slide 31
	Slide 32: The Need for Domain-Aware DL testing Methods
	Slide 33: Invariance Tests
	Slide 34: Directional Expectation Tests
	Slide 35: End-to-End Workflow of the Proposed Method 
	Slide 36: Evaluation Models & Results
	Slide 37: Analogies with other DL Applications 
	Slide 38: Semantically-preserving Data Transformations
	Slide 39: Semantically-preserving Data Transformations
	Slide 40: How can we generate valid inputs from complex domains?
	Slide 41: As software tests are written in code, DL tests can be produced by DL models !
	Slide 42: Conclusion
	Slide 43: Towards Trustworthy DL Software System

